Sustainable Catalysis for Green Chemistry and Energy Transition
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Contributions
- Akhtar, M.S.; Aslam, M.; Zaman, W.; Velu, K.S.; Sun, S.; Lim, H.N. Catalytic Fluorination with Modern Fluorinating Agents: Recent Developments and Synthetic Scope. Catalysts 2025, 15, 665.
- Steinmetz, M.; Sémeril, D. Confined Catalysis Involving a Palladium Complex and a Self-Assembled Capsule for the Dimerization of Vinyl Arenes and the Formation of Indane and Tribenzo–Pentaphene Derivatives. Catalysts 2025, 15, 585.
- Liu, S.; Hu, Y.; Zhang, Q.; Tan, X.; Cui, H.; Li, F.; Lei, H.; Zhuo, O. Synthesis of Well-Crystallized Cu-Rich Layered Double Hydroxides and Improved Catalytic Performances for Water–Gas Shift Reaction. Catalysts 2025, 15, 546.
- He, J.; Liu, M.; Chen, C.; Li, G.; Zheng, K.; Shen, C. Highly Efficient and Sustainable HT@NC/Pd Catalysts for Suzuki Coupling and Their Application in Elacestrant Synthesis. Catalysts 2025, 15, 389.
- Macherzyński, B. Effects of Enzymatic Disintegration on the Decomposition of Organic Compounds During Methane Fermentation of Sewage Sludge. Catalysts 2025, 15, 75.
- Macherzyński, B.; Wszelaka-Rylik, M.; Gierycz, P.; Kraj, A. Precipitation of Struvite from Supernatants Separated from Enzymatically Disintegrated Digested Sewage Sludge. Catalysts 2025, 15, 361.
- Ribeiro, A.P.; Lobo, W.V.; de Carvalho, T.A.; de Matos, J.M.; de Freitas, F.A.; Ruiz, Y.L.; Matos, R.S.; Ţălu, Ş.; da Fonseca Filho, H.D.; Domínguez, L.A.; et al. Copper Molybdate-Catalyzed Esterification of Levulinic Acid: A Heterogeneous Approach for Biofuel Synthesis. Catalysts 2025, 15, 357.
- Jin, K.; Yan, Y.; Pan, J.; Liu, J.-Y.; Yan, W. The Application of Zeolites in the Selective Synthesis of Methylamine: A Review. Catalysts 2025, 15, 294.
- Zhou, C.; Jing, S.; Miao, T.; Zhou, N.; Zhang, H.; Zhang, Y.; Ge, L.; Liu, W.; Yang, Z. Piezoelectric-Driven Fenton System Based on Bismuth Ferrite Nanosheets for Removal of N-Acetyl-para-aminophenol in Aqueous Environments. Catalysts 2025, 15, 126.
- Hu, T.; Lin, X. Diastereoselective Synthesis of 2-Amino-spiro[4.5]decane-6-ones Through Synergistic Photocatalysis and Organocatalysis for [3 + 2] Cycloaddition of Cyclopropylamines with Olefins. Catalysts 2025, 15, 107.
- Tian, Y.; Yuan, X.; Guo, Z.; Liu, J.; Zhao, T.; Su, Z. Using a Single-Atom FeN4 Catalyst on Defective Graphene for the Efficient Reduction of NO to Alanine: A Computational Study. Catalysts 2024, 14, 876.
- Barthos, R.; Lónyi, F.; Shi, Y.; Szegedi, Á.; Vikár, A.; Solt, H.E.; Novodárszki, G. Catalytic Aspects of Liquid Organic Hydrogen Carrier Technology. Catalysts 2025, 15, 427.
- Luo, Y.; Zhang, Z.; Wang, Y.; Zheng, Y.; Jiang, X.; Zhao, Y.; Zhang, Y.; Liu, X.; Wang, Z.; Fang, B. A Review of the Application of Metal-Based Heterostructures in Lithium–Sulfur Batteries. Catalysts 2025, 15, 106.
- Saber, O.; Awada, C.; Hegazy, A.M.; Osama, A.; Shaalan, N.M.; Alshoaibi, A.; Osama, M. Controlling the Carbon Species to Design Effective Photocatalysts Based on Explosive Reactions for Purifying Water by Light. Catalysts 2025, 15, 96.
- Santoveña-Uribe, A.; Ledesma-Durán, A.; Torres-Enriquez, J.; Santamaría-Holek, I. Theoretical Insights into Methanol Electro-Oxidation on NiPd Nanoelectrocatalysts: Investigating the Carbonate–Palladium Oxide Pathway and the Role of Water and OH Adsorption. Catalysts 2025, 15, 101.
- Souza, J.C.; Mello, M.I.S.; Barbosa, F.F.; Souza, I.M.S.; Sachse, A.; Pergher, S.B.C. Influence of Secondary Porosity Introduction via Top-Down Methods on MOR, ZSM-5, and Y Zeolites on Their Cumene Cracking Performance. Catalysts 2025, 15, 146.
- Akhtar, M.S.; Zaman, W. Advancing Sustainable Catalysis: Catalytic Solutions for Green Chemistry and the Energy Transition. Catalysts 2025, 15, 511.
References
- Xiao, T.; Shirvani, T.; Inderwildi, O.; Gonzalez-Cortes, S.; AlMegren, H.; King, D.; Edwards, P.P. The Catalyst Selectivity Index (CSI): A Framework and Metric to Assess the Impact of Catalyst Efficiency Enhancements upon Energy and CO2 Footprints. Top. Catal. 2015, 58, 682–695. [Google Scholar] [CrossRef]
- Zheng, R.; Liu, Z.; Wang, Y.; Xie, Z.; He, M. The Future of Green Energy and Chemicals: Rational Design of Catalysis Routes. Joule 2022, 6, 1148–1159. [Google Scholar] [CrossRef]
- Li, L.; Yao, Y.; Fu, N. Trinity of electrochemistry, photochemistry, and transition metal catalysis. Chem. Catal. 2024, 4, 100898. [Google Scholar] [CrossRef]
- Voiry, D.; Shin, H.S.; Loh, K.P.; Chhowalla, M. Low-Dimensional Catalysts for Hydrogen Evolution and CO2 Reduction. Nat. Rev. Chem. 2018, 2, 0105. [Google Scholar] [CrossRef]
- Wang, Z.-Q.; Xu, Z.-N.; Zhang, M.-J.; Chen, Q.-S.; Chen, Y.; Guo, G.-C. Insight into Composition Evolution in the Synthesis of High-Performance Cu/SiO2 Catalysts for CO2 Hydrogenation. RSC Adv. 2016, 6, 25185–25190. [Google Scholar] [CrossRef]
- Zhu, J.; Shaikhutdinov, S.; Roldan Cuenya, B. Structure–Reactivity Relationships in CO2 Hydrogenation to C2+ Chemicals on Fe-Based Catalysts. Chem. Sci. 2025, 16, 1071–1092. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.D.; Tran, Y.B.N.; Nguyen, H.N.; Nguyen, T.C.; Gándara, F.; Nguyen, P.T.K. A Series of Metal–Organic Frameworks for Selective CO2 Capture and Catalytic Oxidative Carboxylation of Olefins. Inorg. Chem. 2018, 57, 13772–13782. [Google Scholar] [CrossRef] [PubMed]
- Ugale, B.; Dhankhar, S.S.; Nagaraja, C.M. Construction of 3-Fold-Interpenetrated Three-Dimensional Metal–Organic Frameworks of Nickel(II) for Highly Efficient Capture and Conversion of Carbon Dioxide. Inorg. Chem. 2016, 55, 9757–9766. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Zhang, Q.; Liu, Y.; Zheng, Z.; Cheng, H.; Huang, B.; Wang, P. Photocatalytic Overall Water Splitting with a Solar-to-Hydrogen Conversion Efficiency Exceeding 2% through Halide Perovskite. Angew. Chem. Int. Ed. 2024, 63, e202411016. [Google Scholar] [CrossRef] [PubMed]
- Madavi, T.B.; Chauhan, S.; Keshri, A.; Alavilli, H.; Choi, K.-Y.; Pamidimarri, S.D.V.N. Whole-Cell Biocatalysis: Advancements toward the Biosynthesis of Fuels. Biofuels Bioprod. Biorefining 2022, 16, 859–876. [Google Scholar] [CrossRef]
- Qi, W.; Feng, Q.; Wang, W.; Zhang, Y.; Hu, Y.; Shakeel, U.; Xiao, L.; Wang, L.; Chen, H.; Liang, C. Combination of Surfactants and Enzyme Cocktails for Enhancing Woody Biomass Saccharification and Bioethanol Production from Lab-Scale to Pilot-Scale. Bioresour. Technol. 2023, 384, 129343. [Google Scholar] [CrossRef] [PubMed]
- Mace, S.; Xu, Y.; Nguyen, B.N. Automated Transition Metal Catalysts Discovery and Optimisation with AI and Machine Learning. ChemCatChem 2024, 16, e202301475. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhtar, M.S.; Zaman, W. Sustainable Catalysis for Green Chemistry and Energy Transition. Catalysts 2025, 15, 773. https://doi.org/10.3390/catal15080773
Akhtar MS, Zaman W. Sustainable Catalysis for Green Chemistry and Energy Transition. Catalysts. 2025; 15(8):773. https://doi.org/10.3390/catal15080773
Chicago/Turabian StyleAkhtar, Muhammad Saeed, and Wajid Zaman. 2025. "Sustainable Catalysis for Green Chemistry and Energy Transition" Catalysts 15, no. 8: 773. https://doi.org/10.3390/catal15080773
APA StyleAkhtar, M. S., & Zaman, W. (2025). Sustainable Catalysis for Green Chemistry and Energy Transition. Catalysts, 15(8), 773. https://doi.org/10.3390/catal15080773