Metal Oxide-Doped Pd-Based Catalysts for Enhanced Formaldehyde Oxidation
Abstract
1. Introduction
2. Results and Discussion
2.1. Electrochemical Characterization of Sensitive Materials
2.2. Sensor Performance Theory
2.3. Sensor Performance Test
2.4. The In-Depth Analysis of the Catalyst Performance
2.5. An Investigation of the Influence Mechanism of Metal Oxide Doping
2.5.1. Changes in Electron Cloud Density of Pd Before and After Doping with Different Metal Oxides
2.5.2. Specific Surface Area and Pore Size Distribution Data for Different Catalysts
2.6. Kinetic Analysis of Catalytic Reactions
2.6.1. Reaction Rate Constants for Each Catalyst at Different Temperatures
2.6.2. Reaction Rates of Each Catalyst at Different Formaldehyde Concentrations (30 °C)
2.7. Long-Term Stability and Cycling Performance Analysis
2.7.1. Recycling Performance of Different Catalysts
2.7.2. Changes in Catalyst Performance After Long-Term Storage
2.8. Cost–Benefit Assessment
2.8.1. Comparison of Feedstock Costs for Different Catalysts
2.8.2. The Estimation of the Cost-Effectiveness of Different Catalysts in Practical Applications
3. Experiment
3.1. Instruments and Reagents
3.2. Preparation of the Catalyst
3.3. Catalytic Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dorieh, A.; Selakjani, P.P.; Shahavi, M.H.; Pizzi, A.; Movahed, S.G.; Pour, M.F.; Aghaei, R. Recent developments in the performance of micro/nanoparticle-modified urea-formaldehyde resins used as wood-based composite binders: A review. Int. J. Adhes. Adhes. 2022, 114, 103106. [Google Scholar] [CrossRef]
- Luo, B.; Cao, L.; Luo, F.; Mu, R.; Wang, C.; Chen, L.; Sun, K.; Xu, Y.; Liu, S.; Zhou, H.; et al. Breakthrough progress of thin-film thermocouple development on special-shaped superalloy surface. Aeronaut. Mater. J. 2023, 43, 117–120. [Google Scholar]
- Zhang, Y.; Yu, Y.; Zhang, C.; Song, N.; Guo, Z.; Liang, M. Highly sensitive and selective detection of formaldehyde via bio-electrocatalysis over aldehyde dehydrogenase. Anal. Chem. 2022, 94, 15827–15831. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Wang, R.; Wang, L.; Qu, H.; Zheng, L. Breath alcohol sensor based on hydrogel-gated graphene field-effect transistor. Biosens. Bioelectron. 2022, 210, 114319. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yu, Z.; Huang, L.; Zeng, Y.; Liu, X.; Tang, D. Photoinduced electron transfer modulated photoelectric signal: Toward an organic small molecule-based photoelectrochemical platform for formaldehyde detection. Anal. Chem. 2023, 95, 9130–9137. [Google Scholar] [CrossRef] [PubMed]
- Inobeme, A.; Natarajan, A.; Pradhan, S.; Adetunji, C.O.; Ajai, A.I.; Inobeme, J.; Tsado, M.J.; Jacob, J.O.; Pandey, S.S.; Singh, K.R.; et al. Chemical Sensor Technologies for Sustainable Development: Recent Advances, Classification, and Environmental Monitoring. Adv. Sens. Res. 2024, 3, 2400066. [Google Scholar] [CrossRef]
- Ruiz-López, E.; Ribota Peláez, M.; Blasco Ruz, M.; Domínguez Leal, M.I.; Martinez Tejada, M.; Ivanova, S.; Centeno, M.Á. Formic acid dehydrogenation over Ru-and Pd-based catalysts: Gas-vs. liquid-phase reactions. Materials 2023, 16, 472. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, X.; Tay, S.W. Nanostructured PdRu/C catalysts for formic acid oxidation. J. Solid State Electrochem. 2012, 16, 545–550. [Google Scholar] [CrossRef]
- Lou, Z.; Zhou, J.; Sun, M.; Xu, J.; Yang, K.; Lv, D.; Zhao, Y.; Xu, X. MnO2 enhances electrocatalytic hydrodechlorination by Pd/Ni foam electrodes and reduces Pd needs. Chem. Eng. J. 2018, 352, 549–557. [Google Scholar] [CrossRef]
- Batista, E.A.; Iwasita, T. Adsorbed intermediates of formaldehyde oxidation and their role in the reaction mechanism. Langmuir 2006, 22, 7912–7916. [Google Scholar] [CrossRef] [PubMed]
- Kulesza, P.J.; Pieta, I.S.; Rutkowska, I.A.; Wadas, A.; Marks, D.; Klak, K.; Stobinski, L.; Cox, J.A. Electrocatalytic oxidation of small organic molecules in acid medium: Enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides. Electrochim. Acta 2013, 110, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Li, W.; Ma, J.; Lei, Y.; Zhu, Y.; Huang, Q.; Dou, X. A review of the preparation and applications of MnO2 composites in formaldehyde oxidation. J. Ind. Eng. Chem. 2018, 66, 126–140. [Google Scholar] [CrossRef]
- Dong, Q.; Wu, M.; Mei, D.; Shao, Y.; Wang, Y.; Liu, J.; Li, H.; Hong, L. Multifunctional Pd–Sn electrocatalysts enabled by in situ formed SnOx and TiC triple junctions. Nano Energy 2018, 53, 940–948. [Google Scholar] [CrossRef]
- Han, F.; Li, F.; Liu, S.; Niu, L. Sub-stoichiometric WO2.9 as co-catalyst with platinum for formaldehyde gas sensor with high sensitivity. Sens. Actuators B Chem. 2018, 263, 369–376. [Google Scholar] [CrossRef]
- Zhou, J.; Qin, L.; Xiao, W.; Zeng, C.; Li, N.; Lv, T.; Zhu, H. Oriented growth of layered-MnO2 nanosheets over α-MnO2 nanotubes for enhanced room-temperature HCHO oxidation. Appl. Catal. B Environ. 2017, 207, 233–243. [Google Scholar] [CrossRef]
- Song, C.; Khanfar, M.; Pickup, P.G. Mo oxide modified catalysts for direct methanol, formaldehyde and formic acid fuel cells. J. Appl. Electrochem. 2006, 36, 339–345. [Google Scholar] [CrossRef]
- Güntner, A.T.; Abegg, S.; Wegner, K.; Pratsinis, S.E. Zeolite membranes for highly selective formaldehyde sensors. Sens. Actuators B Chem. 2018, 257, 916–923. [Google Scholar] [CrossRef]
- Li, Y.; Qu, J.; Gao, F.; Lv, S.; Shi, L.; He, C.; Sun, J. In situ fabrication of Mn3O4-decorated graphene oxide as a synergistic catalyst for degradation of methylene blue. Appl. Catal. B Environ. 2015, 162, 268–274. [Google Scholar] [CrossRef]
- Bigiani, L.; Maccato, C.; Carraro, G.; Gasparotto, A.; Sada, C.; Comini, E.; Barreca, D. Tailoring vapor-phase fabrication of Mn3O4 nanosystems: From synthesis to gas-sensing applications. ACS Appl. Nano Mater. 2018, 1, 2962–2970. [Google Scholar] [CrossRef]
Catalysts | Electrochemically Active Area (m2/g) | FOR Activity (mA/cm3) | The Limit Current Density at 1000s (mA/cm3) |
---|---|---|---|
Pd-Mn3O4 | 20.6 | 3.5 | 0.48 |
Pd-MoO3 | 41.6 | 2.8 | 0.41 |
Pd-SnO | 41.6 | 2.1 | 0.29 |
Pd | 19.6 | 1.3 | 0.11 |
Catalysts | Pd3d Orbital Binding Energy Before Doping (eV) | Pd3d Orbital Binding Energy After Doping (eV) | Binding Energy Change (ΔE) |
---|---|---|---|
Pd-Mn3O4 | 335.2 | 334.8 | −0.4 |
Pd-MoO3 | 335.3 | 335.0 | −0.3 |
Pd-SnO | 335.1 | 334.9 | −0.2 |
Catalysts | BET Specific Surface Area (m2/g) | Average Pore Size (nm) | Pore Volume (cm2/g) |
---|---|---|---|
Pd-Mn3O4 | 120 | 5.2 | 0.32 |
Pd-MoO3 | 105 | 6.1 | 0.28 |
Pd-SnO | 110 | 5.8 | 0.30 |
Pd | 90 | 4.5 | 0.22 |
T (°C) | Pd-Mn3O4 Reaction Rate Constant (k1, s−1) | Pd-MoO3 Reaction Rate Constant (k2, s−2) | Pd-SnO Reaction Rate Constant (k3, s−3) | Pd Reaction Rate Constant (k4, s−4) |
---|---|---|---|---|
25 | 0.025 | 0.018 | 0.015 | 0.010 |
30 | 0.032 | 0.023 | 0.020 | 0.013 |
35 | 0.040 | 0.028 | 0.025 | 0.016 |
40 | 0.048 | 0.033 | 0.030 | 0.019 |
Formaldehyde Concentrations (30 °C) (ppm) | Pd-Mn3O4 Reaction Rate | Pd-MoO3 Reaction Rate | Pd-SnO Reaction Rate | Pd Reaction Rate |
---|---|---|---|---|
10 | 0.005 | 0.003 | 0.0025 | 0.0015 |
20 | 0.010 | 0.006 | 0.005 | 0.003 |
30 | 0.015 | 0.009 | 0.0075 | 0.0045 |
40 | 0.020 | 0.012 | 0.010 | 0.006 |
Catalysts | Number of Cycles | FOR Retention of Activity (%) |
---|---|---|
Pd-Mn3O4 | 10 | 92 |
Pd-MoO3 | 10 | 85 |
Pd-SnO | 10 | 80 |
Pd | 10 | 70 |
Catalysts | Storage Time (Months) | Initial FOR Activity | FOR Activity After Storage | Rate of Change in Activity (%) |
---|---|---|---|---|
Pd-Mn3O4 | 3 | 3.5 | 3.3 | −5.7 |
Pd-MoO3 | 3 | 2.8 | 2.4 | −14.3 |
Pd-SnO | 3 | 2.1 | 1.8 | −14.3 |
Pd | 3 | 1.3 | 1.0 | −23.1 |
Catalysts | Price of Main Raw Materials (RMB/g) | Raw Material Cost per Gram of Catalyst (RMB) |
---|---|---|
Pd-Mn3O4 | PdCl2:500; KMnO4:50 | 0.5 × (9/10) + 0.05 × (1/10) = 0.455 |
Pd-MoO3 | PdCl2:500; (NH4)6Mo7O24·4H2O:80 | 0.5 × (9/10) + 0.08 × (1/10) = 0.458 |
Pd-SnO | PdCl2:500; SnCl2·2H2O:100 | 0.5 × (9/10) + 0.1 × (1/10) = 0.46 |
Pd | PdCl2:500 | 0.5 |
Catalysts | Amount of Catalyst Required to Treat 1 m3 of 1000 ppm Formaldehyde (g) | Processing Cost (RMB) | Processing Efficiency (%) |
---|---|---|---|
Pd-Mn3O4 | 0.5 | 0.2275 | 95 |
Pd-MoO3 | 0.6 | 0.2748 | 88 |
Pd SnO | 0.7 | 0.322 | 82 |
Pd | 0.8 | 0.4 | 75 |
Catalyst | Sensitivity (μA/ppm) | Response Time (s) | Selectivity (HCHO/EtOH) | Signal Degradation (30 Days) | Reference |
---|---|---|---|---|---|
Pd-Mn3O4 (this work) | 1.5 | 11 (at 1 ppm) | ~20× | <7% | This work |
Pt-WO2.9 (15%) | 53 | ~34 (at 100 ppm) | ~10× | ~20% | [14] |
Pt-SnO2 (core–shell) | 30 | 25–30 | 5–10× | ~15% | [13] |
Aldehyde dehydrogenase/graphene | ~2.0 | <20 | High (bio-selective) | ~10% | [3] |
Pt/C | ~10 | ~60 | <5× | >25% | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, B.; Li, X.; Rong, Z.; Wang, X.; Liu, Z. Metal Oxide-Doped Pd-Based Catalysts for Enhanced Formaldehyde Oxidation. Catalysts 2025, 15, 762. https://doi.org/10.3390/catal15080762
Chang B, Li X, Rong Z, Wang X, Liu Z. Metal Oxide-Doped Pd-Based Catalysts for Enhanced Formaldehyde Oxidation. Catalysts. 2025; 15(8):762. https://doi.org/10.3390/catal15080762
Chicago/Turabian StyleChang, Bohao, Xingyu Li, Zeren Rong, Xingshu Wang, and Zhihui Liu. 2025. "Metal Oxide-Doped Pd-Based Catalysts for Enhanced Formaldehyde Oxidation" Catalysts 15, no. 8: 762. https://doi.org/10.3390/catal15080762
APA StyleChang, B., Li, X., Rong, Z., Wang, X., & Liu, Z. (2025). Metal Oxide-Doped Pd-Based Catalysts for Enhanced Formaldehyde Oxidation. Catalysts, 15(8), 762. https://doi.org/10.3390/catal15080762