Macroporous Resin-Based La-N Co-Doped TiO2 Composites for Efficient Removal of Environmental Pollutants in Water via Integrating Adsorption and Photocatalysis
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterizations
2.2. Adsorption Performances
2.3. Photocatalytic Performances
3. Experimental Section
3.1. Materials
3.2. Catalyst Preparation
3.3. Photocatalytic Experiment
3.4. Characterization Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, H.; Park, J.; Lam, S.S.; Park, Y.-K.; Kim, S.-C.; Jung, S.-C. Diclofenac degradation properties of a La-doped visible light-responsive TiO2 photocatalyst. Sustain. Chem. Pharm. 2022, 25, 100564. [Google Scholar] [CrossRef]
- Miri-Jahromi, A.; Mohammady Maklavany, D.; Rouzitalab, Z.; Ghaemi Khiavi, S.; Ghasemy, E.; Khedri, M.; Rezvantalab, S.; Sharafinia, S.; Rashidi, A.; Maleki, R. Engineering of two-dimensional monolayers to phenolic compounds removal from wastewater: An experimental and computational insight. J. Mol. Liq. 2022, 362, 119784. [Google Scholar] [CrossRef]
- Moulahoum, H.; Ghorbanizamani, F.; Sakarya, S.; Timur, S. Lightless catalytic layered chitosan coating film using doped TiO2@metal ions nanoparticles for highly efficient dye degradation in aqueous media and disinfection applications. Prog. Org. Coat. 2022, 169, 106923. [Google Scholar] [CrossRef]
- Homocianu, M.; Pascariu, P. High-performance photocatalytic membranes for water purification in relation to environmental and operational parameters. J. Environ. Manag. 2022, 311, 114817. [Google Scholar] [CrossRef]
- Zheng, X. Application of nano-TiO2 photocatalyst in marine pollution control. Desalin. Water Treat. 2022, 268, 303–312. [Google Scholar] [CrossRef]
- Ge, J.; Zhang, Z.; Ouyang, Z.; Shang, M.; Liu, P.; Li, H.; Guo, X. Photocatalytic degradation of (micro)plastics using TiO2-based and other catalysts: Properties, influencing factor, and mechanism. Environ. Res. 2022, 209, 112729. [Google Scholar] [CrossRef]
- Rangarajan, G.; Jayaseelan, A.; Farnood, R. Photocatalytic reactive oxygen species generation and their mechanisms of action in pollutant removal with biochar supported photocatalysts: A review. J. Clean. Prod. 2022, 346, 131155. [Google Scholar] [CrossRef]
- Li, W.; Zhao, W.; Zhu, H.; Li, Z.-J.; Wang, W. State of the art in the photochemical degradation of (micro)plastics: From fundamental principles to catalysts and applications. J. Mater. Chem. A 2023, 11, 2503–2527. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Liu, Z.; Liu, S.; Huang, F.; Zheng, M. Novel bacterial cellulose-TiO2 stabilized Pickering emulsion for photocatalytic degradation. Cellulose 2022, 29, 5223–5234. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Meksi, M.; Turki, A.; Kochkar, H.; Bousselmi, L.; Guillard, C.; Berhault, G. The role of lanthanum in the enhancement of photocatalytic properties of TiO2 nanomaterials obtained by calcination of hydrogenotitanate nanotubes. Appl. Catal. B-Environ. 2016, 181, 651–660. [Google Scholar] [CrossRef]
- Choi, J.; Park, H.; Hoffmann, M.R. Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2. J. Phys. Chem. C 2010, 114, 783–792. [Google Scholar] [CrossRef]
- Liqiang, J.; Xiaojun, S.; Baifu, X.; Baiqi, W.; Weimin, C.; Honggang, F. The preparation and characterization of La doped TiO2 nanoparticles and their photocatalytic activity. J. Solid State Chem. 2004, 177, 3375–3382. [Google Scholar] [CrossRef]
- Dubnová, L.; Zvolská, M.; Edelmannová, M.; Matějová, L.; Reli, M.; Drobná, H.; Kuśtrowski, P.; Kočí, K.; Čapek, L. Photocatalytic decomposition of methanol-water solution over N-La/TiO2 photocatalysts. Appl. Surf. Sci. 2019, 469, 879–886. [Google Scholar] [CrossRef]
- Ma, Z.-L.; Huang, G.-F.; Xu, D.-S.; Xia, M.-G.; Huang, W.-Q.; Tian, Y. Coupling effect of La doping and porphyrin sensitization on photocatalytic activity of nanocrystalline TiO2. Mater. Lett. 2013, 108, 37–40. [Google Scholar] [CrossRef]
- Iwasaki, M.; Hara, M.; Kawada, H.; Tada, H.; Ito, S. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light. J. Colloid Interface Sci. 2000, 224, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yu, Y.; Wang, E.; Wang, J.; Yao, J.; Cao, Y. Structure of Nitrogen and Zirconium Co-Doped Titania with Enhanced Visible-Light Photocatalytic Activity. ACS Appl. Mater. Interfaces 2014, 6, 4622–4629. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yang, X.; He, J.; He, Y.; Wang, D. One-step hydrothermal method to prepare nitrogen and lanthanum co-doped TiO2 nanocrystals with exposed {001} facets and study on their photocatalytic activities in visible light. J. Alloys Compd. 2015, 637, 308–314. [Google Scholar] [CrossRef]
- Liu, D.; Wu, Z.; Tian, F.; Ye, B.-C.; Tong, Y. Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. J. Alloys Compd. 2016, 676, 489–498. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Wang, X.; Zhang, J.; Gu, Z.; Zhou, L.; Zhao, J. Enhanced visible light photocatalytic activity of a floating photocatalyst based on B–N-codoped TiO2 grafted on expanded perlite. RSC Adv. 2015, 5, 41385–41392. [Google Scholar] [CrossRef]
- Louangsouphom, B.; Wang, X.; Song, J.; Wang, X. Low-temperature preparation of a N-TiO2/macroporous resin photocatalyst to degrade organic pollutants. Environ. Chem. Lett. 2019, 17, 1061–1066. [Google Scholar] [CrossRef]
- Fan, W.-Q.; Bai, H.-Y.; Zhang, G.-H.; Yan, Y.-S.; Liu, C.-B.; Shi, W.-D. Titanium dioxide macroporous materials doped with iron: Synthesis and photo-catalytic properties. CrystEngComm 2014, 16, 116–122. [Google Scholar] [CrossRef]
- Zhao, J.-X.; Zhang, B.-P.; Li, Y.; Yan, L.-P.; Wang, S.-J. Optical and photocatalytic properties of TiO2/Ag–SiO2 nanocomposite thin films. J. Alloys Compd. 2012, 535, 21–26. [Google Scholar] [CrossRef]
- Yang, G.; Yan, Z.; Xiao, T. Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity. Appl. Surf. Sci. 2012, 258, 8704–8712. [Google Scholar] [CrossRef]
- Sharotri, N.; Sud, D. A greener approach to synthesize visible light responsive nanoporous S-doped TiO2 with enhanced photocatalytic activity. New J. Chem. 2015, 39, 2217–2223. [Google Scholar] [CrossRef]
- Nasir, M.; Bagwasi, S.; Jiao, Y.; Chen, F.; Tian, B.; Zhang, J. Characterization and activity of the Ce and N co-doped TiO2 prepared through hydrothermal method. Chem. Eng. J. 2014, 236, 388–397. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, L.J.; Zhu, Z.Q.; Liu, Q.J. Synthesis and properties of (Yb, N)-TiO2 photocatalyst for degradation of methylene blue (MB) under visible light irradiation. Mater. Res. Bull. 2015, 70, 358–364. [Google Scholar] [CrossRef]
- Kadam, A.N.; Dhabbe, R.S.; Kokate, M.R.; Gaikwad, Y.B.; Garadkar, K.M. Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochim. Acta A 2014, 133, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Qiu, F.; Rong, J.; Yan, J.; Zhao, H.; Zhu, X.; Yang, D. Synthesis of porous g-C3N4/La and enhanced photocatalytic activity for the degradation of phenol under visible light irradiation. J. Solid State Chem. 2015, 230, 126–134. [Google Scholar] [CrossRef]
- Ren, C.; Qiu, W.; Zhang, H.; He, Z.; Chen, Y. Degradation of benzene on TiO2/SiO2/Bi2O3 photocatalysts under UV and visible light. J. Mol. Catal. A Chem. 2015, 398, 215–222. [Google Scholar] [CrossRef]
- Xia, Y.; Jiang, Y.; Li, F.; Xia, M.; Xue, B.; Li, Y. Effect of calcined atmosphere on the photocatalytic activity of P-doped TiO2. Appl. Surf. Sci. 2014, 289, 306–315. [Google Scholar] [CrossRef]
- Parnicka, P.; Mazierski, P.; Grzyb, T.; Wei, Z.; Kowalska, E.; Ohtani, B.; Lisowski, W.; Klimczuk, T.; Nadolna, J. Preparation and photocatalytic activity of Nd-modified TiO2 photocatalysts: Insight into the excitation mechanism under visible light. J. Catal. 2017, 353, 211–222. [Google Scholar] [CrossRef]
- Sakthivel, S.; Janczarek, M.; Kisch, H. Visible Light Activity and Photoelectrochemical Properties of Nitrogen-Doped TiO2. J. Phys. Chem. B 2004, 108, 19384–19387. [Google Scholar] [CrossRef]
- Jia, T.; Fu, F.; Yu, D.; Cao, J.; Sun, G. Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance. Appl. Surf. Sci. 2018, 430, 438–447. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Li, J.; Liu, J.; Wang, L.; Zhang, H.; Zhang, Z.; Zhao, B. Visible-light-driven photocatalyst of La–N-codoped TiO2 nano-photocatalyst: Fabrication and its enhanced photocatalytic performance and mechanism. J. Ind. Eng. Chem. 2015, 25, 16–21. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; Wen, J.; Liu, Y.; Zheng, X. Rare-earth oxides modified Mg-Al layered double oxides for the enhanced adsorption-photocatalytic activity. Colloids Surf. Physicochem. Eng. Asp. 2021, 610, 125933. [Google Scholar] [CrossRef]
- Feng, J.; Wang, L.; Ran, X.; Xiao, B.; Lei, L.; Zhu, J.; Li, R.; Xi, X.; Feng, G. Adsorption and photocatalytic synergistic removal of ciprofloxacin on mesoporous ErFeO3/g-C3N4 heterojunction. Environ. Technol. Innov. 2022, 28, 102785. [Google Scholar] [CrossRef]
- Maruthapandi, M.; Kumar, V.B.; Luong, J.H.T.; Gedanken, A. Kinetics, Isotherm, and Thermodynamic Studies of Methylene Blue Adsorption on Polyaniline and Polypyrrole Macro–Nanoparticles Synthesized by C-Dot-Initiated Polymerization. ACS Omega 2018, 3, 7196–7203. [Google Scholar] [CrossRef]
- Liu, R.; Fu, X.; Guo, Y.; Zhang, J.; Tian, W. A study on Ag or Ce doped and co-doped ZnO for the photocatalytic degradation of RhB dye. Vacuum 2023, 215, 112337. [Google Scholar] [CrossRef]
- Yousefi Limaee, N.; Ghahari, M.; Seifpanahi-Shabani, K.; Naeimi, A.; Ghaedi, S. Evaluation of Adsorptive Efficiency of Calcium Oxide Nanoparticles for the Elimination of Cationic Dyes: Combustion Synthesis, Adsorption Study and Numerical Modeling. Prog. Color Color. Coat. 2023, 16, 1–20. [Google Scholar] [CrossRef]
- Sitab, A.A.; Tujjohra, F.; Rashid, T.U.; Rahman, M.M. Thermally crosslinked electrospun nanofibrous mat from chrome-tanned solid wastes for cationic dye adsorption in wastewater treatment. Clean. Eng. Technol. 2023, 13, 100621. [Google Scholar] [CrossRef]
- Peng, H.; Gao, F.; Zheng, X. Dual Z-scheme La2S3−MoS2/La2MoO6 heterojunction for excellent solar light induced adsorption-photocatalytic activity. J. Mol. Struct. 2025, 1327, 141191. [Google Scholar] [CrossRef]
- Barour, M.; Tounsadi, H.; Khnifira, M.; Farnane, M.; Machrouhi, A.; Abdennouri, M.; Barka, N. Adsorption of dyes on microwave assisted activated stalks of pepper plants: Experimental, DFT and Monte Carlo simulation studies. Appl. Surf. Sci. 2023, 16, 100424. [Google Scholar] [CrossRef]
- Xiao, T.; Tang, Z.; Yang, Y.; Tang, L.; Zhou, Y.; Zou, Z. In situ construction of hierarchical WO3/g-C3N4 composite hollow microspheres as a Z-scheme photocatalyst for the degradation of antibiotics. Appl. Catal. B-Environ. 2018, 220, 417–428. [Google Scholar] [CrossRef]
- Ghanbarnezhad, M.; Parvareh, A.; Keshavarz Moraveji, M.; Jorfi, S. La, S, N tri-doped TiO2/nickel foam as efficient photoelectrode for degradation of BTX solution under visible light irradiation. J. Photochem. Photobiol. A Chem. 2022, 431, 114044. [Google Scholar] [CrossRef]
- Ozay, Y.; Dizge, N. The effect of pre-treatment methods on membrane flux, COD, and total phenol removal efficiencies for membrane treatment of pistachio wastewater. J. Environ. Manag. 2022, 310, 114762. [Google Scholar] [CrossRef]
- Chen, D.; Gao, H.; Yao, Y.; Zhu, L.; Zhou, X.; Peng, X.; Zhang, M. Pd loading, Mn+ (n = 1, 2, 3) metal ions doped TiO2 nanosheets for enhanced photocatalytic H2 production and reaction mechanism. Int. J. Hydrogen Energy 2022, 47, 10250–10260. [Google Scholar] [CrossRef]
- Bai, H.; Xiong, R.; Wang, N.; Tian, M.; Zhao, J.; Tang, F.; Jiang, J. Synergistic effects of rare-metal ytterbium doping on TiO2/g-C3N5 heterostructures for enhanced photocatalytic degradation of methylene blue. Inorg. Chem. Commun. 2025, 175, 114159. [Google Scholar] [CrossRef]
- Nain, P.; Pawar, M.; Rani, S.; Sharma, B.; Kumar, S.; Majeed Khan, M.A. (Ce, Nd) co-doped TiO2 NPs via hydrothermal route: Structural, optical, photocatalytic and thermal behavior. Mater. Sci. Eng. B 2024, 309, 117648. [Google Scholar] [CrossRef]
- Lu, D.; Kumar Kondamareddy, K.; Fan, H.; Gao, B.; Wang, J.; Wang, J.; Hao, H. Highly improved visible-light-driven photocatalytic removal of Cr(VI) over yttrium doped H-Titanate nanosheets and its synergy with organic pollutant oxidation. Sep. Purif. Technol. 2019, 210, 775–785. [Google Scholar] [CrossRef]
- Bao, R.; Li, R.; Chen, C.; Wu, H.; Xia, J.; Long, C.; Li, H. Biotemplated synthesis of 3D rare earth–doped TiO2 hollow spheres for photocatalytic application. J. Phys. Chem. Solids 2019, 126, 78–84. [Google Scholar] [CrossRef]
- Li, Y.; Lv, L.; Gao, T.; Zhang, C.; Zhang, F.; Li, Q. Efficient degradation of RhB by Fe-N-TiO2 through photocatalytic synergistic persulfate system. Funct. Mater. Lett. 2024, 18, 2551019. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Dinh Quoc, V.; Nguyen, T.L.; Le, T.T.T.; Dinh, T.K.; Nguyen, V.T.; Nguyen, P.H. Visible-Light-Driven SO42−/TiO2 Photocatalyst Synthesized from Binh Dinh (Vietnam) Ilmenite Ore for Rhodamine B Degradation. J. Nanomater. 2021, 2021, 8873181. [Google Scholar] [CrossRef]
- Malkari Katika, R.; Boddu, S. Advanced photocatalysis with biochar-TiO2 composite for efficient oxidation of Congo red dye. Environ. Monit. Assess. 2025, 197, 831. [Google Scholar] [CrossRef]
- Yu, B.; Miao, C.; Wang, D.; Li, H.; Sun, D.; Jiang, W.; Liu, C.; Che, G. Preparation of visible light responsive g-C3N4/H-TiO2 Z-scheme heterojunction with enhanced photocatalytic activity for RhB degradation. J. Mater. Sci. Mater. Electron. 2022, 33, 17587–17598. [Google Scholar] [CrossRef]
- Wu, C.; Yin, M.; Zhang, R.; Li, Z.; Zou, Z.; Li, Z. Further studies of photodegradation and photocatalytic hydrogen production over Nafion-coated Pt/P25 sensitized by rhodamine B. Int. J. Hydrogen Energy 2020, 45, 22700–22710. [Google Scholar] [CrossRef]
Photocatalyst | Specific Surface Area (m2/g) | Pore Size (nm) | Total Pore Volume (m3/g) | Comments |
---|---|---|---|---|
TiO2/MAR | 425.19 | 9.12 | 0.36903 | Error ± 2% (BET analysis) |
N/TiO2/MAR | 415.37 | 6.72 | 0.26753 | Error ± 2% (BET analysis) |
La0.01/N/TiO2/MAR | 468.88 | 9.40 | 0.42903 | Error ± 3% (BET analysis) |
La0.05/N/TiO2/MAR | 322.72 | 11.67 | 0.46488 | Error ± 3% (BET analysis) |
La0.1/N/TiO2/MAR | 452.90 | 8.016 | 0.38931 | Error ± 2% (BET analysis) |
Catalyst Samples | Temperature (K) | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|---|
qmax (mg/g) | KL (L/mg) | R2 | KF (mg/g) | 1/n | R2 | ||
TiO2/MAR | 288 | 15.439 | 0.039 | 0.9513 | 0.2431 | 0.484 | 0.9701 |
298 | 15.659 | 0.058 | 0.9781 | 0.5360 | 0.413 | 0.9795 | |
308 | 16.165 | 0.082 | 0.9818 | 0.7005 | 0.340 | 0.9724 | |
N/TiO2/MAR | 288 | 22.276 | 0.129 | 0.9855 | 0.7503 | 0.440 | 0.9648 |
298 | 22.727 | 0.168 | 0.9778 | 0.8021 | 0.418 | 0.9571 | |
308 | 23.142 | 0.240 | 0.9773 | 0.8712 | 0.365 | 0.9814 | |
La0.05/N/TiO2/MAR | 288 | 37.495 | 0.115 | 0.9327 | 0.8834 | 0.478 | 0.9541 |
298 | 38.328 | 0.154 | 0.9424 | 0.9276 | 0.454 | 0.9352 | |
308 | 38.431 | 0.221 | 0.9515 | 0.9779 | 0.403 | 0.9172 |
Catalyst Samples | qe.exp (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|---|---|
qe (mg/g) | k1 (l/min) | R2 | qe (mg/g) | k2 (g/mg/min) | h | R2 | ||
TiO2/MAR | 5.715 | 6.397 | 6.49 × 10−3 | 0.9788 | 5.892 | 4.51 × 10−3 | 0.1564 | 0.9951 |
N/TiO2/MAR | 13.776 | 10.541 | 6.93 × 10−3 | 0.9800 | 14.334 | 1.16 × 10−3 | 0.3313 | 0.9885 |
La0.05/N/TiO2/MAR | 20.225 | 12.518 | 7.55 × 10−3 | 0.9670 | 21.303 | 9.47 × 10−4 | 0.4301 | 0.9823 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, W.; Louangsouphom, B.; Ye, X.; Liu, H.; Wang, X. Macroporous Resin-Based La-N Co-Doped TiO2 Composites for Efficient Removal of Environmental Pollutants in Water via Integrating Adsorption and Photocatalysis. Catalysts 2025, 15, 759. https://doi.org/10.3390/catal15080759
Qu W, Louangsouphom B, Ye X, Liu H, Wang X. Macroporous Resin-Based La-N Co-Doped TiO2 Composites for Efficient Removal of Environmental Pollutants in Water via Integrating Adsorption and Photocatalysis. Catalysts. 2025; 15(8):759. https://doi.org/10.3390/catal15080759
Chicago/Turabian StyleQu, Wenbin, Bountheva Louangsouphom, Xiaoling Ye, Huimei Liu, and Xin Wang. 2025. "Macroporous Resin-Based La-N Co-Doped TiO2 Composites for Efficient Removal of Environmental Pollutants in Water via Integrating Adsorption and Photocatalysis" Catalysts 15, no. 8: 759. https://doi.org/10.3390/catal15080759
APA StyleQu, W., Louangsouphom, B., Ye, X., Liu, H., & Wang, X. (2025). Macroporous Resin-Based La-N Co-Doped TiO2 Composites for Efficient Removal of Environmental Pollutants in Water via Integrating Adsorption and Photocatalysis. Catalysts, 15(8), 759. https://doi.org/10.3390/catal15080759