Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,285)

Search Parameters:
Authors = Yun Zhang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5141 KiB  
Article
Efficient Copper Biosorption by Rossellomorea sp. ZC255: Strain Characterization, Kinetic–Equilibrium Analysis, and Genomic Perspectives
by Hao-Tong Han, Han-Sheng Zhu, Jin-Tao Zhang, Xin-Yun Tan, Yan-Xin Wu, Chang Liu, Xin-Yu Liu and Meng-Qi Ye
Microorganisms 2025, 13(8), 1839; https://doi.org/10.3390/microorganisms13081839 - 7 Aug 2025
Abstract
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational [...] Read more.
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational efficiency. In our previous research, Rossellomorea sp. ZC255 demonstrated substantial potential for environmental bioremediation applications. This study investigated the removal characteristics and underlying mechanism of strain ZC255 and revealed that the maximum removal capacity was 253.4 mg/g biomass under the optimal conditions (pH 7.0, 28 °C, and 2% inoculum). The assessment of the biosorption process followed pseudo-second-order kinetics, while the adsorption isotherm may fit well with both the Langmuir and Freundlich models. Cell surface alterations on the Cu(II)-treated biomass were observed through scanning electron microscopy (SEM). Cu(II) binding functional groups were determined via Fourier transform infrared spectroscopy (FTIR) analysis. Simultaneously, the genomic analysis of strain ZC255 identified multiple genes potentially involved in heavy metal resistance, transport, and metabolic processes. These studies highlight the significance of strain ZC255 in the context of environmental heavy metal bioremediation research and provide a basis for using strain ZC255 as a copper removal biosorbent. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

14 pages, 5840 KiB  
Article
Paint Removal Performance and Sub-Surface Microstructural Evolution of Ti6Al4V Alloy Using Different Process Parameters of Continuous Laser Cleaning
by Haoye Zeng, Biwen Li, Liangbin Hu, Yun Zhang, Ruiqing Li, Chaochao Zhou and Pinghu Chen
Coatings 2025, 15(8), 916; https://doi.org/10.3390/coatings15080916 - 6 Aug 2025
Abstract
Laser cleaning technology has been increasingly applied in the removal of damaged protective coatings from aircraft components due to its environmental friendliness and high efficiency. Appropriate laser cleaning process parameters improve cleaning efficiency while preventing substrate damage. In this study, a Gaussian continuous-wave [...] Read more.
Laser cleaning technology has been increasingly applied in the removal of damaged protective coatings from aircraft components due to its environmental friendliness and high efficiency. Appropriate laser cleaning process parameters improve cleaning efficiency while preventing substrate damage. In this study, a Gaussian continuous-wave laser was used to remove the 120 μm coating on the surface of Ti6Al4V alloy. The influence of laser power (100 W to 200 W) and scanning speed (520 mm/min to 610 mm/min) on the paint removal effect was explored based on paint removal rate, surface roughness, microstructural evolution, and the hardness’ change in the direction of heat transfer. The results reveal that optimal paint removal parameters are achieved at a laser power of 100 W with a scanning speed of 550 mm/min. The surface roughness of the sample after paint removal (55 nm) is similar to that of the original substrate (56 nm). Through EBSD analysis, the influence of laser thermal accumulation on the microstructure of the substrate is relatively small. The average hardness of the cross-section after cleaning was 347 HV, which was only 3.41% higher than that of the original substrate. This confirms that parameter-controlled laser cleaning can effectively remove ~120 μm thick paint layers without inflicting damage on the substrate. Full article
Show Figures

Figure 1

18 pages, 6413 KiB  
Article
A Recognition Method for Marigold Picking Points Based on the Lightweight SCS-YOLO-Seg Model
by Baojian Ma, Zhenghao Wu, Yun Ge, Bangbang Chen, He Zhang, Hao Xia and Dongyun Wang
Sensors 2025, 25(15), 4820; https://doi.org/10.3390/s25154820 - 5 Aug 2025
Abstract
Accurate identification of picking points remains a critical challenge for automated marigold harvesting, primarily due to complex backgrounds and significant pose variations of the flowers. To overcome this challenge, this study proposes SCS-YOLO-Seg, a novel method based on a lightweight segmentation model. The [...] Read more.
Accurate identification of picking points remains a critical challenge for automated marigold harvesting, primarily due to complex backgrounds and significant pose variations of the flowers. To overcome this challenge, this study proposes SCS-YOLO-Seg, a novel method based on a lightweight segmentation model. The approach enhances the baseline YOLOv8n-seg architecture by replacing its backbone with StarNet and introducing C2f-Star, a novel lightweight feature extraction module. These modifications achieve substantial model compression, significantly reducing the model size, parameter count, and computational complexity (GFLOPs). Segmentation efficiency is further optimized through a dual-path collaborative architecture (Seg-Marigold head). Following mask extraction, picking points are determined by intersecting the optimized elliptical mask fitting results with the stem skeleton. Experimental results demonstrate that SCS-YOLO-Seg effectively balances model compression with segmentation performance. Compared to YOLOv8n-seg, it maintains high accuracy while significantly reducing resource requirements, achieving a picking point identification accuracy of 93.36% with an average inference time of 28.66 ms per image. This work provides a robust and efficient solution for vision systems in automated marigold harvesting. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

18 pages, 7499 KiB  
Article
Transformer Winding Fault Locating Using Frequency Domain Reflectometry (FDR) Technology
by Hao Yun, Yizhou Zhang, Yufei Sun, Liang Wang, Lulin Xu, Daning Zhang and Jialu Cheng
Electronics 2025, 14(15), 3117; https://doi.org/10.3390/electronics14153117 - 5 Aug 2025
Abstract
Detecting power transformer winding degradations at an early stage is very important for the safe operation of nuclear power plants. Most transformer failures are caused by insulation breakdown; the winding turn-to-turn short circuit fault is frequently encountered. Experience has shown that routine testing [...] Read more.
Detecting power transformer winding degradations at an early stage is very important for the safe operation of nuclear power plants. Most transformer failures are caused by insulation breakdown; the winding turn-to-turn short circuit fault is frequently encountered. Experience has shown that routine testing techniques, e.g., winding resistance, leakage inductance, and sweep frequency response analysis (SFRA), are not sensitive enough to identify minor turn-to-turn short defects. The SFRA technique is effective only if the fault is in such a condition that the flux distribution in the core is prominently distorted. This paper proposes the frequency domain reflectometry (FDR) technique for detecting and locating transformer winding defects. FDR measures the wave impedance and its change along the measured windings. The wire over a plane model is selected as the transmission line model for the transformer winding. The effectiveness is verified through lab experiments on a twist pair cable simulating the transformer winding and field testing on a real transformer. The FDR technique successfully identified and located the turn-to-turn short fault that was not detected by other testing techniques. Using FDR as a complementary tool for winding condition assessment will be beneficial. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

21 pages, 4939 KiB  
Article
Nitrogen-Fixing Bacterium GXGL-4A Promotes the Growth of Cucumber Plant Under Nitrogen Stress by Altering the Rhizosphere Microbial Structure
by Ying-Ying Han, Yu-Qing Bao, Er-Xing Wang, Ya-Ting Zhang, Bao-Lin Liu and Yun-Peng Chen
Microorganisms 2025, 13(8), 1824; https://doi.org/10.3390/microorganisms13081824 - 5 Aug 2025
Viewed by 97
Abstract
The rhizosphere microbiome plays an important role in carbon- and nitrogen-cycling in soil and in the stress response of plants. It also affects the function of the ammonium transporter (AmtB) that senses nitrogen levels inside and outside the cells of the associative nitrogen-fixing [...] Read more.
The rhizosphere microbiome plays an important role in carbon- and nitrogen-cycling in soil and in the stress response of plants. It also affects the function of the ammonium transporter (AmtB) that senses nitrogen levels inside and outside the cells of the associative nitrogen-fixing bacterium GXGL-4A. However, the potential mechanism of the interaction between the AmtB deletion mutant of GXGL-4A (∆amtB) and microorganisms in the rhizosphere of plants under low-nitrogen stress is still unclear. As revealed by transcriptome analyses, mutation of the amtB gene in GXGL-4A resulted in a significant up-regulation of many functional genes associated with nitrogen fixation and transportation at transcription level. The application of ∆amtB changed the nitrogen level in the rhizosphere of cucumber seedlings and reshaped the microbial community structure in the rhizosphere, enriching the relative abundance of Actinobacteriota and Gemmatimonadota. Based on bacterial functional prediction analyses, the metabolic capacities of rhizobacteria were improved after inoculation of cucumber seedlings with the original strain GXGL-4A or the ∆amtB mutant, resulting in the enhancement of amino acids, lipids, and carbohydrates in the cucumber rhizosphere, which promoted the growth of cucumber plants under a low-nitrogen stress condition. The results contribute to understanding the biological function of gene amtB, revealing the regulatory role of the strain GXGL-4A on cucumber rhizosphere nitrogen metabolism and laying a theoretical foundation for the development of efficient nitrogen-fixing bacterial agents for sustainable agricultural production. Full article
Show Figures

Figure 1

15 pages, 628 KiB  
Article
Accurate Nonrelativistic Energy Calculations for Helium 1snp1,3P (n = 2 to 27) States via Correlated B-Spline Basis Functions
by Jing Chi, Hao Fang, Yong-Hui Zhang, Xiao-Qiu Qi, Li-Yan Tang and Ting-Yun Shi
Atoms 2025, 13(8), 72; https://doi.org/10.3390/atoms13080072 - 4 Aug 2025
Viewed by 101
Abstract
Rydberg atoms play a crucial role in testing atomic structure theory, quantum computing and simulation. Measurements of transition frequencies from the 21,3S states to Rydberg P1,3 states have reached a precision of several kHz, which poses [...] Read more.
Rydberg atoms play a crucial role in testing atomic structure theory, quantum computing and simulation. Measurements of transition frequencies from the 21,3S states to Rydberg P1,3 states have reached a precision of several kHz, which poses significant challenges for theoretical calculations, since the accuracy of variational energy calculations decreases rapidly with increasing principal quantum number n. Recently the complex “triple” Hylleraas basis was employed to attain the ionization energy of helium 24P1 state with high accuracy. Different from it, we extended the correlated B-spline basis functions (C-BSBFs) to calculate the Rydberg states of helium. The nonrelativistic energies of 1snpP1,3 states up to n=27 achieve at least 14 significant digits using a unified basis set, thereby greatly reducing the complexity of the optimization process. Results of geometric structure parameters and cusp conditions were presented as well. Both the global operator and direct calculation methods are employed and cross-checked for contact potentials. This C-BSBF method not only obtains high-accuracy energies across all studied levels but also confirms the effectiveness of the C-BSBFs in depicting long-range and short-range correlation effects, laying a solid foundation for future high-accuracy Rydberg-state calculations with relativistic and QED corrections included in helium atom and low-Z helium-like ions. Full article
(This article belongs to the Special Issue Atom and Plasma Spectroscopy)
Show Figures

Figure 1

10 pages, 1588 KiB  
Article
385 nm AlGaN Near-Ultraviolet Micro Light-Emitting Diode Arrays with WPE 30.18% Realized Using an AlN-Inserted Hole Spreading Enhancement S Electron Blocking Layer
by Qi Nan, Shuhan Zhang, Jiahao Yao, Yun Zhang, Hui Ding, Qian Fan, Xianfeng Ni and Xing Gu
Coatings 2025, 15(8), 910; https://doi.org/10.3390/coatings15080910 - 3 Aug 2025
Viewed by 168
Abstract
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays [...] Read more.
In this work, we demonstrate high-efficiency 385 nm AlGaN-based near-ultraviolet micro light emitting diode (NUV-Micro LED) arrays. The epi structure is prepared using a novel AlN-inserted superlattice electrical blocking layer which enhances hole spreading in the p-type region significantly. The NUV-Micro LED arrays in this work comprise 228 chips in parallel with wavelengths at 385 nm, and each single chip size is 15 × 30 μm2. Compared with conventional bulk AlGaN-based EBL structures, the NUV-Micro LED arrays that implemented the new hole spreading enhanced superlattice electrical blocking layer (HSESL-EBL) structure proposed in this work had a remarkable increase in light output power (LOP) at current density, increasing the range down from 0.02 A/cm2 to as high as 97 A/cm2. The array’s light output power is increased up to 1540% at the lowest current density 0.02 A/cm2, and up to 58% at the highest current density 97 A/cm2, measured under room temperature (RT); consequently, the WPE is increased from 13.4% to a maximum of 30.18%. This AlN-inserted HESEL-EBL design significantly enhances both the lateral expansion efficiency and the hole injection efficiency into the multi quantum well (MQW) in the arrays, improving the concentration distribution of the holes in MQW while maintaining good suppression of electron leakage. The array’s efficiency droop has also been greatly reduced. Full article
Show Figures

Figure 1

26 pages, 7634 KiB  
Article
Research on the Preparation and Performance of Wood with High Negative Oxygen Ion Release Induced by Moisture
by Min Yin, Yuqi Zhang, Yun Lu, Zongying Fu, Haina Mi, Jianfang Yu and Ximing Wang
Coatings 2025, 15(8), 905; https://doi.org/10.3390/coatings15080905 - 2 Aug 2025
Viewed by 253
Abstract
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release [...] Read more.
With the growing severity of environmental pollution, people are paying increasing attention to their health. However, naturally occurring wood with health benefits and applications in human healthcare is still scarce. Natural wood exhibits a limited negative oxygen ion release capacity, and this release has a short duration, failing to meet practical application requirements. This study innovatively developed a humidity-responsive, healthy wood material with a high negative oxygen ion release capacity based on fast-growing poplar. Through vacuum cyclic impregnation technology, hexagonal stone powder was infused into the pores of poplar wood, endowing it with the ability to continuously release negative oxygen ions. The healthy wood demonstrated a static average negative oxygen ion release rate of 537 ions/cm3 (peaking at 617 ions/cm3) and a dynamic average release rate of 3,170 ions/cm3 (peaking at 10,590 ions/cm3). The results showed that the particle size of hexagonal stone powder in suspension was influenced by the dispersants and dispersion processes. The composite dispersion process demonstrated optimal performance when using 0.5 wt% silane coupling agent γ-(methacryloxy)propyltrimethoxysilane (KH570), achieving the smallest particle size of 8.93 μm. The healthy wood demonstrated excellent impregnation performance, with a weight gain exceeding 14.61% and a liquid absorption rate surpassing 165.18%. The optimal impregnation cycle for vacuum circulation technology was determined to be six cycles, regardless of the type of dispersant. Compared with poplar wood, the hygroscopic swelling rate of healthy wood was lower, especially in PEG-treated samples, where the tangential, radial, longitudinal, and volumetric swelling rates decreased by 70.93%, 71.67%, 69.41%, and 71.35%, respectively. Combining hexagonal stone powder with fast-growing poplar wood can effectively enhance the release of negative oxygen ions. The static average release of negative oxygen ions from healthy wood is 1.44 times that of untreated hexagonal stone powder, and the dynamic release reaches 2 to 3 times the concentration of negative oxygen ions specified by national fresh air standards. The water-responsive mechanism revealed that negative oxygen ion release surged when ambient humidity exceeded 70%. This work proposes a sustainable and effective method to prepare healthy wood with permanent negative oxygen ion release capability. It demonstrates great potential for improving indoor air quality and enhancing human health. Full article
Show Figures

Figure 1

16 pages, 3038 KiB  
Article
The Interaction Mechanism Between Modified Selective Catalytic Reduction Catalysts and Volatile Organic Compounds in Flue Gas: A Density Functional Theory Study
by Ke Zhuang, Hanwen Wang, Zhenglong Wu, Yao Dong, Yun Xu, Chunlei Zhang, Xinyue Zhou, Yangwen Wu and Bing Zhang
Catalysts 2025, 15(8), 728; https://doi.org/10.3390/catal15080728 - 31 Jul 2025
Viewed by 264
Abstract
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, [...] Read more.
The overall efficiency of combining denitrification and volatile organic compound (VOC) removal through selective catalytic reduction (SCR) technology is currently mainly limited by the VOC removal aspect. However, existing studies have not studied the microscopic mechanism of the interaction between VOCs and catalysts, failing to provide a theoretical basis for catalysts. Therefore, this work explored the interaction mechanisms between SCR catalysts doped with different additives and typical VOCs (acetone and toluene) in flue gas based on density functional theory (DFT) calculations. The results showed that the VNi-TiO2 surface exhibited a high adsorption energy of −0.80 eV for acetone and a high adsorption energy of −1.02 eV for toluene on the VMn-TiO2 surface. Electronic structure analysis revealed the VMn-TiO2 and VNi-TiO2 surfaces exhibited more intense orbital hybridization with acetone and toluene, promoting charge transfer between the two and resulting in stronger interactions. The analysis of temperature on adsorption free energy showed that VMn-TiO2 and VNi-TiO2 still maintained high activity at high temperatures. This work contributes to clarifying the interaction mechanism between SCR and VOCs and enhancing the VOC removal efficiency. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Graphical abstract

19 pages, 4397 KiB  
Article
Thermal History-Dependent Deformation of Polycarbonate: Experimental and Modeling Insights
by Maoyuan Li, Haitao Wang, Guancheng Shen, Tianlun Huang and Yun Zhang
Polymers 2025, 17(15), 2096; https://doi.org/10.3390/polym17152096 - 30 Jul 2025
Viewed by 262
Abstract
The deformation behavior of polymers is influenced not only by service conditions such as temperature and the strain rate but also significantly by the formation process. However, existing simulation frameworks typically treat injection molding and the in-service mechanical response separately, making it difficult [...] Read more.
The deformation behavior of polymers is influenced not only by service conditions such as temperature and the strain rate but also significantly by the formation process. However, existing simulation frameworks typically treat injection molding and the in-service mechanical response separately, making it difficult to capture the impact of the thermal history on large deformation behavior. In this study, the deformation behavior of injection-molded polycarbonate (PC) was investigated by accounting for its thermal history during formation, achieved through combined experimental characterization and constitutive modeling. PC specimens were prepared via injection molding followed by annealing at different molding/annealing temperatures and durations. Uniaxial tensile tests were conducted using a Zwick universal testing machine at strain rates of 10−3–10−1 s−1 and temperatures ranging from 293 K to 353 K to obtain stress–strain curves. The effects of the strain rate, testing temperature, and annealing conditions were thoroughly examined. Building upon a previously proposed phenomenological model, a new constitutive framework incorporating thermal history effects during formation was developed to characterize the large deformation behavior of PC. This model was implemented in ABAQUS/Explicit using a user-defined material subroutine. Predicted stress–strain curves exhibit excellent agreement with the experimental data, accurately reproducing elastic behavior, yield phenomena, and strain-softening and strain-hardening stages. Full article
Show Figures

Figure 1

14 pages, 2284 KiB  
Article
Rhizobacteria’s Effects on the Growth and Competitiveness of Solidago canadensis Under Nutrient Limitation
by Zhi-Yun Huang, Ying Li, Hu-Anhe Xiong, Misbah Naz, Meng-Ting Yan, Rui-Ke Zhang, Jun-Zhen Liu, Xi-Tong Ren, Guang-Qian Ren, Zhi-Cong Dai and Dao-Lin Du
Agriculture 2025, 15(15), 1646; https://doi.org/10.3390/agriculture15151646 - 30 Jul 2025
Viewed by 186
Abstract
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere [...] Read more.
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere of the invasive weed Solidago canadensis. We assessed their nitrogen utilization capacity and indoleacetic acid (IAA) production capabilities to evaluate their ecological functions. Our three-stage experimental design encompassed strain promotion, nutrient stress, and competition phases. Bacillus sp. ScRB44 demonstrated robust IAA production and significantly improved the nitrogen utilization efficiency, significantly enhancing S. canadensis growth, especially under nutrient-poor conditions, and promoting a shift in biomass allocation toward the roots, thereby conferring a competitive advantage over native species. Conversely, Pseudomonas sp. ScRB22 exhibited limited functional activity and a negligible impact on plant performance. These findings underscore that the ecological impact of rhizosphere bacteria on invasive weeds is closely linked to their specific growth-promoting functions. By enhancing stress adaptation and optimizing resource allocation, certain microorganisms may facilitate the establishment of invasive weeds in adverse environments. This study highlights the significance of microbial functional traits in invasion ecology and suggests novel approaches for microbiome-based invasive weed management, with potential applications in agricultural soil health improvement and ecological restoration. Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
Show Figures

Figure 1

18 pages, 4411 KiB  
Article
Research on Enhancing Target Recognition Rate Based on Orbital Angular Momentum Spectrum with Assistance of Neural Network
by Guanxu Chen, Hongyang Wang, Hao Yun, Zhanpeng Shi, Zijing Zhang, Chengshuai Cui, Di Wu, Xinran Lyu and Yuan Zhao
Photonics 2025, 12(8), 771; https://doi.org/10.3390/photonics12080771 - 30 Jul 2025
Viewed by 247
Abstract
In this paper, the single-mode vortex beam is used to illuminate targets of different shapes, and the targets are recognized using machine learning algorithms based on the orbital angular momentum (OAM) spectral information of the echo signal. We innovatively utilize three neural networks—multilayer [...] Read more.
In this paper, the single-mode vortex beam is used to illuminate targets of different shapes, and the targets are recognized using machine learning algorithms based on the orbital angular momentum (OAM) spectral information of the echo signal. We innovatively utilize three neural networks—multilayer perceptron (MLP), convolutional neural network (CNN) and residual neural network (ResNet)—to train extensive echo OAM spectrum data. The trained models can rapidly and accurately classify the OAM spectrum data of different targets’ echo signals. The results show that the residual network (ResNet) performs best under all turbulence intensities and can achieve a high recognition rate when Cn2=1×1013 m2/3. In addition, even when the target size is η=0.3, the recognition rate of ResNet can reach 97%, while the robustness of MLP and CNN to the target size is lower; the recognition rates are 91.75% and 91%, respectively. However, although the recognition performance of CNN and MLP is slightly lower than that of ResNet, their training time is much lower than that of ResNet, which can achieve a good balance between recognition performance and training time cost. This research has a promising future in the fields of target recognition and intelligent navigation based on multi-dimensional information. Full article
(This article belongs to the Special Issue Advancements in Optics and Laser Measurement)
Show Figures

Figure 1

14 pages, 1081 KiB  
Article
Optical Frequency Comb-Based Continuous-Variable Quantum Secret Sharing Scheme
by Runsheng Peng, Yijun Wang, Hang Zhang, Yun Mao and Ying Guo
Mathematics 2025, 13(15), 2455; https://doi.org/10.3390/math13152455 - 30 Jul 2025
Viewed by 334
Abstract
Quantum secret sharing (QSS) faces inherent limitations in scaling to multi-user networks due to excess noise introduced by highly asymmetric beam splitters (HABSs) in chain-structured topologies. To overcome this challenge, we propose an optical frequency comb-based continuous-variable QSS (OFC CV-QSS) scheme that establishes [...] Read more.
Quantum secret sharing (QSS) faces inherent limitations in scaling to multi-user networks due to excess noise introduced by highly asymmetric beam splitters (HABSs) in chain-structured topologies. To overcome this challenge, we propose an optical frequency comb-based continuous-variable QSS (OFC CV-QSS) scheme that establishes parallel frequency channels between users and the dealer via OFC-generated multi-wavelength carriers. By replacing the chain-structured links with dedicated frequency channels and integrating the Chinese remainder theorem (CRT) with a decentralized architecture, our design eliminates excess noise from all users using HABS while providing mathematical- and physical-layer security. Simulation results demonstrate that the scheme achieves a more than 50% improvement in maximum transmission distance compared to chain-based QSS, with significantly slower performance degradation as users scale to 20. Numerical simulations confirm the feasibility of this theoretical framework for multi-user quantum networks, offering dual-layer confidentiality without compromising key rates. Full article
Show Figures

Figure 1

19 pages, 6906 KiB  
Article
Deep Neural-Assisted Flexible MXene-Ag Composite Strain Sensor with Crack Dual Conductive Network for Human Motion Sensing
by Junheng Fu, Zichen Xia, Haili Zhong, Xiangmou Ding, Yijie Lai, Sisi Li, Mengjie Zhang, Minxia Wang, Yuhao Zhang, Gangjin Huang, Fei Zhan, Shuting Liang, Yun Zeng, Lei Wang and Yang Zhao
Materials 2025, 18(15), 3537; https://doi.org/10.3390/ma18153537 - 28 Jul 2025
Viewed by 355
Abstract
Developing stretchable strain sensors that combine both high sensitivity and a wide linear range is a critical requirement for health electronics, yet it remains challenging to meet the practical demands of daily health monitoring. This study proposes a novel heterogeneous surface strategy by [...] Read more.
Developing stretchable strain sensors that combine both high sensitivity and a wide linear range is a critical requirement for health electronics, yet it remains challenging to meet the practical demands of daily health monitoring. This study proposes a novel heterogeneous surface strategy by in situ silver deposition on modified PDMS followed by MXene spray coating, constructing a multilevel microcrack strain sensor (MAP) using silver nanoparticles and MXene. This innovative multilevel heterogeneous microcrack structure forms a dual conductive network, which demonstrates excellent detection performance within GFmax = 487.3 and response time ≈65 ms across various deformation variables. And the seamless integration of the sensor arrays was designed and employed for the detection of human activities without sacrificing biocompatibility and comfort. Furthermore, by adopting advanced deep learning technology, these sensor arrays could identify different joint movements with an accuracy of up to 95%. These results provide a promising example for designing high-performance stretchable strain sensors and intelligent recognition systems. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 4551 KiB  
Article
Study on the Bearing Performance of Pole-Assembled Inclined Pile Foundation Under Downward Pressure-Horizontal Loads
by Chong Zhao, Wenzhuo Song, Wenzheng Hao, Furan Guo, Yan Yang, Mengxin Kang, Liang Zhang and Yun Wang
Buildings 2025, 15(15), 2656; https://doi.org/10.3390/buildings15152656 - 28 Jul 2025
Viewed by 195
Abstract
A novel prefabricated pile foundation is presented to improve the disaster resistance of the pole line. Bearing performance analysis of prefabricated inclined pile foundations for electric poles under downward pressure-horizontal loading is carried out, and the effects of prefabricated foundation dimensions and pile [...] Read more.
A novel prefabricated pile foundation is presented to improve the disaster resistance of the pole line. Bearing performance analysis of prefabricated inclined pile foundations for electric poles under downward pressure-horizontal loading is carried out, and the effects of prefabricated foundation dimensions and pile inclination on the horizontal load–displacement curves at the top of the poles, the horizontal displacement and settlement at the top of the piles, the horizontal displacement and tilt rate of the poles’ bodies and piles bending moments are investigated. The findings indicate the following: as the prefabricated foundation size grows, the bearing capacity of the foundation improves, and the anti-overturning ability of the electric pole improves; the foundation size increases from 0.9 m to 1.35 m, the anti-overturning bearing capacity of the foundation increases by 15.77%, the maximum bending moment of the foundation pile body increases by 19.7%, and the maximum bending moment occurs at about 0.2 m of the pile body; the bearing capacity of inclined piles is larger than that of straight piles—with an increase in the pile inclination angle, the foundation bearing performance increases, and the overturning bearing capacity of the poles increases; the pile inclination angle grows from 0° to 20°, the overturning bearing performance of the foundation increases by 19.2%, the maximum bending moment of the foundation piles reduces by 21.2%, and the maximum of the bending moment occurs at the pile body at a position of about 0.2 m. Full article
Show Figures

Figure 1

Back to TopTop