Nitrogen-Fixing Bacterium GXGL-4A Promotes the Growth of Cucumber Plant Under Nitrogen Stress by Altering the Rhizosphere Microbial Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Cucumber Cultivar
2.2. Cucumber Planting and Rhizosphere Soil Sampling
2.3. DNA Extraction, 16S rRNA Gene Amplicon Sequencing and Data Processing
2.4. Rarefaction Analysis
2.5. RNA Extraction and Transcriptome Sequencing
2.6. Determination of Soil Enzyme Activity
2.7. Evaluation of Siderophore Synthesis Ability of the GXGL-4A and ∆amtB Strains
3. Results
3.1. Transcriptome Sequencing Data
3.2. Enrichment Analysis Based on the DEGs
3.3. Rarefaction Analysis of Metagenome Data
3.4. Soil Enzyme Activity and Seedling Growth Inoculated with NFB Strains Under Low-Nitrogen Stress
3.5. Bacterial Diversity and Composition in the Rhizosphere Soil After NFB Inoculation
3.6. Microbial Enrichment Analysis and Bio-Functional Prediction in the Cucumber Rhizosphere Soil
3.7. Transcription Levels of Genes Related to Nitrogen Fixation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidson, E.A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat. Geosci. 2009, 2, 659–662. [Google Scholar] [CrossRef]
- Matsuyama, N.; Saigusa, M.; Sakaiya, E.; Tamakawa, K.; Oyamada, Z.; Kudo, K. Acidification and soil productivity of allophanic andosols affected by heavy application of fertilizers. Soil. Sci. Plant. Nutr. 2005, 51, 117–123. [Google Scholar] [CrossRef]
- Kronzucker, H.J.; Britto, D.T.; Davenport, R.J.; Tester, M. Ammonium toxicity and the real cost of transport. Trends Plant. Sci. 2001, 6, 335–337. [Google Scholar] [CrossRef] [PubMed]
- Chen, F. Effects of application and ratio of nitrogen, phosphorus, and potassium on mineral nutrient absorption and yield of cucumber (Cucumis sativus L.). J. Northwest Univ. 2015, 43, 174–180. [Google Scholar]
- Wu, T.; Qin, Z.; Fan, L.; Xue, C.; Zhou, X.; Xin, M.; Du, Y. Involvement of in nitrate recycling during senescence in cucumber. J. Plant Nutr. Soil. Sc. 2014, 177, 714–721. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, X.; Yu, H.; Jiang, W.; Sun, N.; Liu, X.; Liu, X.; Zhang, X.; Wang, Y.; Gu, X. RNA-seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network. Plant Cell Physiol. 2015, 56, 455–467. [Google Scholar] [CrossRef]
- Nygaard, T.P.; Rovira, C.; Peters, G.; Jensen, M.Ø. Ammonium recruitment and ammonia transport by E. coli ammonia channel AmtB. Biophys. J. 2006, 91, 4401–4412. [Google Scholar] [CrossRef]
- Huergo, L.F.; Merrick, M.; Pedrosa, F.O.; Chubatsu, L.S.; Araujo, L.M.; Souza, E.M. Ternary complex formation between AMTB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Mol. Microbiol. 2007, 66, 1523–1535. [Google Scholar] [CrossRef]
- Freitas, A.D.S.; Stamford, N.P. Associative nitrogen fixation and growth of maize in a Brazilian rainforest soil as affected by and organic materials. Trop. Grassl. 2002, 36, 77–82. [Google Scholar]
- Hao, J.; Zhang, X.; Qiu, S.; Song, F.; Lyu, X.; Ma, Y.; Peng, H. Species diversity, nitrogen fixation, and nutrient solubilization activities of endophytic bacteria in pea embryos. Appl. Sci. Basel. 2024, 14, 788. [Google Scholar] [CrossRef]
- Barney, B.M.; Eberhart, L.J.; Ohlert, J.M.; Knutson, C.M.; Plunkett, M.H. Gene deletions resulting in increased nitrogen release by Azotobacter vinelandii: Application of a novel nitrogen biosensor. Appl. Environ. Microb. 2015, 81, 4316–4328. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Lu, W.; Yu, Y.; Qiu, H.; Zeng, Y.; Wang, L.; Liu, Y.; Yan, L.; Fu, Y.V.; Zheng, Y. The ammonium transporter AmtB is dispensable for the uptake of ammonium in the phototrophic diazotroph Rhodopseudomonas palustris. Environ. Technol. Innov. 2024, 36, 103853. [Google Scholar] [CrossRef]
- Chen, Y.P.; Huang, Z.B.; Li, J.Y.; Su, G.X.; Feng, B.Y. Complete genome sequence of, GXGL-4A, a nitrogen-fixing bacterium with capability to degrade, TEX. Curr. Microbiol. 2020, 77, 1848–1857. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.Q.; Zhang, M.T.; Feng, B.Y.; Jieensi, W.; Xu, Y.; Xu, L.R.; Han, Y.Y.; Chen, Y.P. Construction characterization application of an ammonium transporter (AmtB) deletion mutant of the nitrogen-fixing bacterium Kosakonia radicincitans GXGL-4A in Cucumis sativus L. seedlings. Curr. Microbiol. 2023, 80, 58. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, R.; Li, S.; Ran, S.; Wang, J.; Zhou, Y.; Gao, H.; Zhong, F. The mechanism of melatonin promotion on cucumber seedling growth at different nitrogen levels. Plant Physiol. Biochem. 2024, 206, 108263. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhang, H.; Wang, M.; Chen, S. Diazotrophic Paenibacillus beijingensis BJ-18 provides nitrogen for plant and promotes plant growth, nitrogen uptake and metabolism. Front. Microbiol. 2019, 10, 1119. [Google Scholar] [CrossRef]
- Huang, S.; Li, R.; Zhang, Z.; Li, L.I.; Gu, X.; Fan, W.; Li, S. The genome of the cucumber Cucumis sativus L. Nat. Genet. 2009, 41, 1275–1281. [Google Scholar]
- Guan, J.; Miao, H.; Zhang, Z.; Dong, S.; Zhou, Q.; Liu, X.; Beckles, D.M.; Gu, X.; Huang, S.; Zhang, S. A near-complete cucumber reference genome assembly and Cucumber-DB, a multi-omics database. Mol. Plant. 2024, 17, 1178–1182. [Google Scholar] [CrossRef]
- Han, Y.; Wang, J.; Li, L.; Song, D.; Li, W.; Liu, B. H2S signal enhances storage globulin hydrolysis, embryo supercooling and freezing tolerance of hydrated Brassica (Brassica oleracea) seeds. CryoLetters 2025, 46, 164–171. [Google Scholar] [CrossRef]
- Mori, H.; Maruyama, F.; Kato, H.; Toyoda, A.; Dozono, A.; Ohtsubo, Y.; Nagata, Y.; Fujiyama, A.; Tsuda, M.; Kurokawa, K. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA genes. DNA Res. 2014, 21, 217–227. [Google Scholar] [CrossRef]
- Zhang, M.T.; Bao, Y.Q.; Feng, B.Y.; Xu, L.R.; Zhang, Y.T.; Wang, E.X.; Chen, Y.P. Impact of a potent strain of plant growth-promoting bacteria (PGPB), Bacillus subtilis S1 on bacterial community composition, enzymatic activity, and nitrogen content in cucumber rhizosphere soils. Curr. Microbiol. 2024, 81, 358. [Google Scholar] [CrossRef] [PubMed]
- Adrian, L.G.; Carolina, P.Q.; Raquel, A.; Adrian, P.; Itziar, H.; Aser, G.R.; Oscar, G.R. Comparison of Mothur and QIIME for the analysis of rumen microbiota composition based on 16S rRNA amplicon sequences. Front. Microbiol. 2018, 9, 3010. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Wang, E.; Zhang, Y.; Xu, L.; Xue, Y.; Chen, Y. Short-term fertilization with the nitrogen-fixing bacterium (NFB) Kosakonia radicincitans GXGL-4A agent can modify the transcriptome expression profiling of cucumber (Cucumis sativus L.) root. Microorganisms 2025, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.Y.; Zhang, M.T.; Su, G.X.; Bao, Y.Q.; Xu, Y.; Chen, Y.P. Siderophore synthesis ability of the nitrogen-fixing bacterium (NFB) GXGL-4A is regulated at the transcriptional level by a transcriptional factor (trX) and an aminomethyltransferase-encoding gene (amt). Curr. Microbiol. 2022, 79, 369. [Google Scholar] [CrossRef]
- Wu, Q.T.; Stewart, V. NasFED proteins mediate assimilatory nitrate and nitrite transport in Klebsiella oxytoca (pneumoniae) M5al. J. Bacteriol. 1998, 180, 1311–1322. [Google Scholar] [CrossRef]
- Wu, S.Q.T.; Chai, W.H.; Lin, J.T.; Stewart, V. General nitrogen regulation of nitrate assimilation regulatory gene nasR expression in Klebsiella oxytoca M5A1. J. Bacteriol. 1999, 181, 7274–7284. [Google Scholar] [CrossRef]
- Dabas, N.; Schneider, S.; Morschhäuser, J. Mutational analysis of the Candida albicans ammonium permease Mep2p reveals residues required for ammonium transport and signaling. Eukaryot. Cell 2009, 8, 147–160. [Google Scholar] [CrossRef]
- Glöer, J.; Thummer, R.; Ullrich, H.; Schmitz, R.A. Towards understanding the nitrogen signal transduction for nif gene expression in Klebsiella pneumoniae. FEBS J. 2008, 275, 6281–6294. [Google Scholar] [CrossRef]
- Feng, H.; Dong, S.; Li, Y.; Hu, H.; Zhang, T.; Li, Z.; Liu, B. Characterizing nitrogen distribution, source and transformation in groundwater of ecotone of agriculture-animal husbandry: An example from North China. Environ. Earth Sci. 2020, 79, 133. [Google Scholar] [CrossRef]
- Alloisio, N.; Félix, S.; Maréchal, J.; Pujic, P.; Rouy, Z.; Vallenet, D.; Medigue, C.; Normand, P. Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol. Plant. 2007, 130, 440–453. [Google Scholar] [CrossRef]
- Hao, C.K.; Du, P.; Ren, J.; Hu, L.J.; Zhang, Z.P. Halophyte colonization regulates microbial community succession by mediating saline-alkaline and biogenic organic matter in bauxite residue. Sci. Total. Environ. 2023, 905, 1–10. [Google Scholar] [CrossRef]
- Finn, D.; Kopittke, P.M.; Dennis, P.G.; Dalal, R.C. Microbial energy and matter transformation in agricultural soils. Soil. Biol. Biochem. 2017, 111, 176–192. [Google Scholar] [CrossRef]
- Fontaine, S.; Abbadie, L.; Aubert, M.; Barot, S.; Bloor, J.M.G.; Derrien, D.; Duchene, O.; Gross, N.; Henneron, L.; Le Roux, X.; et al. Plant-soil synchrony in nutrient cycles: Learning from ecosystems to design sustainable agrosystems. Glob. Change Biol. 2024, 30, e17034. [Google Scholar] [CrossRef] [PubMed]
- Yoshidome, D.; Hidaka, M.; Miyanaga, T.; Ito, Y.; Kosono, S.; Nishiyama, M. Glutamate production from aerial nitrogen using the nitrogen-fixing bacterium Klebsiella oxytoca. Commun. Biol. 2024, 7, 443. [Google Scholar] [CrossRef]
- Wu, C.; Herold, R.A.; Knoshaug, E.P.; Wang, B.; Xiong, W.; Laurens, L.M.L. Fluxomic analysis reveals central carbon metabolism adaptation for diazotroph Azotobacter vinelandii ammonium excretion. Sci. Rep. 2019, 9, 13209. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Wang, S.; Fu, Q.; Baoyin, T.; Bao, Z.; Li, F.Y. Soil biological nitrogen fixation is closely associated with soil ammonium nitrogen content in a mowing semiarid natural grassland. Appl. Soil. Ecol. 2024, 203, 105690. [Google Scholar] [CrossRef]
- Nie, Y.; Wang, M.; Zhang, W.; Ni, Z.; Hashidoko, Y.; Shen, W. Ammonium nitrogen content is a dominant predictor of bacterial community composition in an acidic forest soil with exogenous nitrogen enrichment. Sci. Total. Environ. 2018, 624, 407–415. [Google Scholar] [CrossRef] [PubMed]
Treatments | Sobs | Chao 1 Index | Shannon Index | Ace Index |
Day 15 | ||||
CK1 | 348.67 ± 14.64 Aa | 388.06 ± 33.83 Aa | 4.43 ± 0.02 Aa | 385.93 ± 26.55 Aa |
WT1 | 266.33 ± 12.42 Bc | 320.59 ± 11.33 Bb | 3.10 ± 0.17 Cc | 313.84 ± 6.24 Bb |
KO1 | 318.00 ± 14.00 Ab | 364.34 ± 7.98 Aba | 3.83 ± 0.15 Bb | 364.69 ± 15.25 Aba |
Day 30 | ||||
CK2 | 345.00 ± 5.00 Aa | 388.97 ± 4.64 Aab | 4.17 ± 0.47 Aab | 386.39 ± 3.10 Aab |
WT2 | 330.00 ± 14.00 Aa | 376.12 ± 15.30 Ab | 3.54 ± 0.30 Ab | 370.74 ± 14.79 Ab |
KO2 | 342.00 ± 5.00 Aa | 415.43 ± 17.69 Aa | 4.34 ± 0.09 Aa | 394.26 ± 5.71 Aa |
Day 45 | ||||
CK3 | 309.33 ± 6.11 Bb | 351.18 ± 22.05 Aa | 3.81 ± 0.15 Bb | 343.00 ± 12.63 Bb |
WT3 | 360.33 ± 14.84 Aa | 397.66 ± 26.48 Aa | 4.37 ± 0.01 Aa | 400.10 ± 25.83 Aa |
KO3 | 304.00 ± 5.57 Bb | 349.35 ± 21.75 Aa | 4.02 ± 0.11 Bb | 345.14 ± 9.64 Bb |
Gene Name | Gene ID | Gene Description | KO | WT |
nifA | A3780_RS10925 | Nif-specific transcriptional activator NifA | 398.47 | 255.33 |
nifB | A3780_RS10920 | nitrogenase cofactor biosynthesis protein NifB | 145.63 | 75.25 |
nifD | A3780_RS11000 | nitrogenase molybdenum-iron protein alpha chain | 177.26 | 82.29 |
nifE | A3780_RS10980 | nitrogenase iron-molybdenum cofactor biosynthesis protein NifE | 156.61 | 78.79 |
nifH | A3780_RS11005 | nitrogenase iron protein | 478.13 | 220.91 |
nifJ | A3780_RS11010 | pyruvate: ferredoxin (flavodoxin) oxidoreductase | 167.07 | 80.1 |
nifK | A3780_RS10995 | nitrogenase molybdenum-iron protein subunit beta | 172.53 | 82.61 |
nifL | A3780_RS10930 | nitrogen fixation negative regulator NifL | 655.41 | 421.94 |
nifM | A3780_RS10940 | nitrogen fixation protein NifM | 57.12 | 27.28 |
nifN | A3780_RS10975 | nitrogenase iron-molybdenum cofactor biosynthesis protein NifN | 94.81 | 47.1 |
nifQ | A3780_RS10915 | nitrogen fixation protein NifQ | 65.56 | 33.61 |
nifS | A3780_RS10960 | cysteine desulfurase NifS | 317.63 | 168.14 |
nifT | A3780_RS10990 | putative nitrogen fixation protein NifT | 269.04 | 108.4 |
nifU | A3780_RS10965 | Fe-S cluster assembly protein NifU | 404.88 | 215.52 |
nifW | A3780_RS10950 | nitrogen fixation protein NifW | 95.42 | 42.73 |
nifB/nifX | A3780_RS10970 | NifB/NifX family molybdenum-iron cluster-binding protein | 37.47 | 18.93 |
nifB/nifX | A3780_RS10985 | NifB/NifX family molybdenum-iron cluster-binding protein | 182.18 | 84.06 |
nifZ | A3780_RS10945 | nitrogen fixation protein NifZ | 81.27 | 40.4 |
anfD | A3780_RS13465 | nitrogenase iron-iron protein alpha chain | 3.8 | 2.02 |
anfG | A3780_RS13460 | Fe-only nitrogenase subunit delta | 5.55 | 4.83 |
anfK | A3780_RS13455 | Fe-only nitrogenase subunit beta | 5.64 | 3.16 |
ntrB | A3780_RS19230 | nitrate ABC transporter permease | 89.38 | 48.8 |
amtB | A3780_RS04740 | ammonium transporter AmtB | 0 | 413.75 |
glnK | A3780_RS04735 | P-II family nitrogen regulator | 1636.51 | 421.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.-Y.; Bao, Y.-Q.; Wang, E.-X.; Zhang, Y.-T.; Liu, B.-L.; Chen, Y.-P. Nitrogen-Fixing Bacterium GXGL-4A Promotes the Growth of Cucumber Plant Under Nitrogen Stress by Altering the Rhizosphere Microbial Structure. Microorganisms 2025, 13, 1824. https://doi.org/10.3390/microorganisms13081824
Han Y-Y, Bao Y-Q, Wang E-X, Zhang Y-T, Liu B-L, Chen Y-P. Nitrogen-Fixing Bacterium GXGL-4A Promotes the Growth of Cucumber Plant Under Nitrogen Stress by Altering the Rhizosphere Microbial Structure. Microorganisms. 2025; 13(8):1824. https://doi.org/10.3390/microorganisms13081824
Chicago/Turabian StyleHan, Ying-Ying, Yu-Qing Bao, Er-Xing Wang, Ya-Ting Zhang, Bao-Lin Liu, and Yun-Peng Chen. 2025. "Nitrogen-Fixing Bacterium GXGL-4A Promotes the Growth of Cucumber Plant Under Nitrogen Stress by Altering the Rhizosphere Microbial Structure" Microorganisms 13, no. 8: 1824. https://doi.org/10.3390/microorganisms13081824
APA StyleHan, Y.-Y., Bao, Y.-Q., Wang, E.-X., Zhang, Y.-T., Liu, B.-L., & Chen, Y.-P. (2025). Nitrogen-Fixing Bacterium GXGL-4A Promotes the Growth of Cucumber Plant Under Nitrogen Stress by Altering the Rhizosphere Microbial Structure. Microorganisms, 13(8), 1824. https://doi.org/10.3390/microorganisms13081824