Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Authors = Xingxing Liu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1970 KiB  
Article
Multi-Objective Vibration Control of a Vehicle-Track-Bridge Coupled System Using Tuned Inerter Dampers Based on the FE-SEA Hybrid Method
by Xingxing Hu, Qingsong Feng, Min Yang and Jian Liu
Appl. Sci. 2025, 15(15), 8675; https://doi.org/10.3390/app15158675 - 5 Aug 2025
Viewed by 114
Abstract
To address the adverse effects of Tuned Inertia Dampers (TIDs) on track slab vibrations while controlling high-frequency rail vibrations, a hybrid Finite Element-Statistical Energy Analysis (FE-SEA) method is developed for modeling the vehicle-track-bridge coupled system. Short-wavelength track irregularities are introduced as high-frequency excitation, [...] Read more.
To address the adverse effects of Tuned Inertia Dampers (TIDs) on track slab vibrations while controlling high-frequency rail vibrations, a hybrid Finite Element-Statistical Energy Analysis (FE-SEA) method is developed for modeling the vehicle-track-bridge coupled system. Short-wavelength track irregularities are introduced as high-frequency excitation, and the accuracy and efficiency of this method are validated by comparison with the traditional finite element method (FEM). A vibration control model for track-bridge structures incorporating TIDs is designed, and the effects of the TID’s inertance, stiffness, and damping coefficients on the vertical acceleration responses of the rail and track slab are investigated in detail. The study reveals that although TIDs effectively reduce rail vibrations, they may induce adverse effects on track slab vibrations. Using the vibration acceleration amplitudes of both the rail and track slab as dual control objectives, a multi-objective optimization model is established, and the TID’s optimal parameters are determined using a multi-objective genetic algorithm. The results show that the optimized TID parameters reduce rail acceleration amplitudes by 16.43% and improve the control efficiency by 12.45%, while also addressing the negative effects on track slab vibration. The track slab’s vibration acceleration is reduced by 5.47%, and the vertical displacement and acceleration of the vehicle body are reduced by 14.22% and 47.5%, respectively, thereby enhancing passenger comfort. This study provides new insights and theoretical guidance for vibration control analysis in vehicle-track-bridge coupled systems. Full article
Show Figures

Figure 1

25 pages, 7040 KiB  
Review
Fluid–Structure Interactions in Pump-Turbines: A Comprehensive Review
by Linmin Shang, Jianfeng Zhu, Xingxing Huang, Shenjie Gao, Zhengwei Wang and Jian Liu
Processes 2025, 13(7), 2321; https://doi.org/10.3390/pr13072321 - 21 Jul 2025
Viewed by 596
Abstract
With the global transition towards renewable energy, pumped storage has become a pivotal technology for large-scale energy storage, playing an essential role in peak load regulation, frequency control, and ensuring the stability of modern power systems. As the core equipment of pumped storage [...] Read more.
With the global transition towards renewable energy, pumped storage has become a pivotal technology for large-scale energy storage, playing an essential role in peak load regulation, frequency control, and ensuring the stability of modern power systems. As the core equipment of pumped storage power stations, pump-turbines operate under complex and frequently changing conditions. These units are required to switch repeatedly between pumping, generating, and transitional modes, giving rise to significant fluid–structure interactions (FSIs). Such interactions have a profound impact on the operational performance and stability of the units. This review provides a comprehensive summary of current research on FSIs in pump-turbines, encompassing both experimental investigations and numerical simulations. Key topics discussed include internal flow dynamics, vibration and acoustic characteristics, and structural responses such as runner deformation and stress distribution. Various numerical coupling strategies for FSI modeling are also examined in detail. Despite progress in this field, several challenges remain, including the complexity of multidisciplinary coupling, the difficulty in developing and solving accurate models, and limitations in predictive capabilities. This review highlights the critical requirements for advancing FSI research in pump-turbines and identifies gaps in the current literature that warrant further investigation. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Graphical abstract

17 pages, 4589 KiB  
Article
Nuclear Magnetic Resonance (NMR) Quantifies Stress-Dependent Permeability in Shale: Heterogeneous Compressibility of Seepage and Adsorption Pores
by Jiali Tian, Juan Yue, Xingxing Liu, Jinchang Sheng and Huimin Wang
Processes 2025, 13(6), 1858; https://doi.org/10.3390/pr13061858 - 12 Jun 2025
Viewed by 408
Abstract
The stress sensitivity of shale caprock permeability is a critical factor influencing the long-term security of CO2 geological sequestration systems. Substantial amounts of clay minerals and nanoscale pore structures reduce shale permeability by trapping water films and throat contraction. Conventional permeability models, [...] Read more.
The stress sensitivity of shale caprock permeability is a critical factor influencing the long-term security of CO2 geological sequestration systems. Substantial amounts of clay minerals and nanoscale pore structures reduce shale permeability by trapping water films and throat contraction. Conventional permeability models, which are based on homogeneous pore compressibility, tend to overestimate the contribution of non-effective pores to water mobility, resulting in significant inaccuracies in predicting stress-dependent permeability. Therefore, this study conducted NMR–seepage experiments under varying confining pressures on four shale samples with distinct lithologies to investigate pore compression deformation and permeability stress sensitivity. The T2 cutoff was subsequently determined through displacement tests to distinguish seepage and adsorption pores. Two distinct constitutive models were calculated with respective compressibility coefficients. Finally, the effects of seepage and adsorption pores on shale permeability stress sensitivity were investigated. The results indicate the following. (1) Increasing confining pressure from 15 to 19 MPa reduces porosity by 14.2–39.6%, with permeability exhibiting a significant decline of 35.6–67.8%. (2) Adsorption pores, stabilized by bound water films of clay minerals, exhibit limited closure under stress. In contrast, seepage pores, influenced by brittle minerals, experience significant deformation, which predominantly contributes to permeability decline. (3) A dual-spring model, differentiating the compressibility of seepage and adsorption pores, reduces prediction errors by 92–96% compared to traditional models. These results highlight that neglecting pore-type-specific compressibility leads to overestimated permeability in heterogeneous shale, with critical implications for optimizing CO2 storage integrity and hydrocarbon recovery strategies. Full article
Show Figures

Figure 1

16 pages, 3031 KiB  
Article
Histopathological and Transcriptional Changes in Silkworm Larval Gonads in Response to Chlorfenapyr Exposure
by Tao Li, Changxiong Hu, Zenghu Liu, Qiongyan Li, Yonghui Fan, Pengfei Liao, Min Liu, Weike Yang, Xingxing Li and Zhanpeng Dong
Insects 2025, 16(6), 619; https://doi.org/10.3390/insects16060619 - 11 Jun 2025
Viewed by 1253
Abstract
Chlorfenapyr is a widely used insecticide known to harm non-target insects, but its effects on reproductive development in the silkworm (Bombyx mori L.) remain incompletely understood. In this study, we investigated the histopathological and transcriptional changes in the gonads (ovaries and testes) [...] Read more.
Chlorfenapyr is a widely used insecticide known to harm non-target insects, but its effects on reproductive development in the silkworm (Bombyx mori L.) remain incompletely understood. In this study, we investigated the histopathological and transcriptional changes in the gonads (ovaries and testes) of newly molted fifth-instar silkworm larvae exposed to chlorfenapyr. Histopathological analysis revealed delayed gonadal development, a reduction in oogonia and oocytes in the ovaries, and decreased numbers of spermatocytes in the testes. Transcriptome analysis identified significant differentially expressed genes (DEGs), mainly enriched in pathways such as “Drug metabolism—cytochrome P450”, “Insect hormone biosynthesis”, and “Ribosome”. Key up-regulated genes included members of the cytochrome P450 family (CYP6B5, CYP9f2, CYP6B6), glutathione S-transferases (GSTT1, GST1), and juvenile hormone-related enzymes (JHAMT, JHEH), indicating active detoxification and hormonal regulation responses. Several transcription factor families, particularly C2H2, HB-other, and TRAF, exhibited altered expression, suggesting roles in stress adaptation. Protein–protein interaction (PPI) network analysis identified hub genes such as EcR, Kr-h1, and various ribosomal proteins, highlighting their potential involvement in reproductive development. Quantitative PCR (qPCR) validated the transcriptomic data, confirming the reliability of the results. Overall, these findings enhance our understanding of chlorfenapyr’s impact on silkworm reproductive development and the underlying molecular mechanisms, providing valuable insights for sustainable pest management and ecological risk assessment of insecticides. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Graphical abstract

22 pages, 3445 KiB  
Article
An Accessibility Analysis of Emergency Shelters in Shenzhen Using the Gaussian-Based Two-Step Floating Catchment Area Method and Clustering
by Qing Yang, Yang Liu, Zhaolin Duan and Xingxing Liu
Sustainability 2025, 17(12), 5250; https://doi.org/10.3390/su17125250 - 6 Jun 2025
Viewed by 448
Abstract
The strategic planning of emergency shelters is vital for enhancing urban resilience against natural disasters, ensuring timely and equitable support for vulnerable populations. However, the existing studies often overlook the effects of fixed search radii and spatial heterogeneity in supply–demand matching. This study [...] Read more.
The strategic planning of emergency shelters is vital for enhancing urban resilience against natural disasters, ensuring timely and equitable support for vulnerable populations. However, the existing studies often overlook the effects of fixed search radii and spatial heterogeneity in supply–demand matching. This study evaluated the spatial accessibility of emergency shelters in Shenzhen, a megacity in China, using a Gaussian two-step floating catchment area (G2SFCA) method integrated with K-means clustering. The analysis incorporated three service radii (1 km, 2.5 km, and 5 km) to assess accessibility levels across spatial scales. The results indicate the following: (1) The supply–demand balance of emergency shelters in Shenzhen varies significantly across service radii. A notable mismatch exists within 1000 m; at 2500 m, the demand in high-density areas is better met with reduced regional disparities, while at 5000 m, the spatial correlation between the supply and demand weakens considerably. (2) The cluster analysis revealed the distinct spatial clustering of supply–demand imbalances, primarily driven by population density. (3) The proposed method offers empirical support for optimized shelter allocation and improving the equity and efficiency of emergency resource distribution. Full article
(This article belongs to the Special Issue Sustainable Transport and Land Use for a Sustainable Future)
Show Figures

Figure 1

16 pages, 1927 KiB  
Article
Natural Selection as the Primary Driver of Codon Usage Bias in the Mitochondrial Genomes of Three Medicago Species
by Yingfang Shen, Leping Qi, Lijuan Yang, Xingxing Lu, Jiaqian Liu and Jiuli Wang
Genes 2025, 16(6), 673; https://doi.org/10.3390/genes16060673 - 30 May 2025
Viewed by 680
Abstract
Objectives: Codon usage bias is a fundamental feature of gene expression that can influence evolutionary processes and genetic diversity. This study aimed to investigate the mitochondrial codon usage characteristics and their driving forces in three Medicago species: Medicago polymorpha, Medicago sativa, [...] Read more.
Objectives: Codon usage bias is a fundamental feature of gene expression that can influence evolutionary processes and genetic diversity. This study aimed to investigate the mitochondrial codon usage characteristics and their driving forces in three Medicago species: Medicago polymorpha, Medicago sativa, and Medicago truncatula. Methods: The complete mitochondrial genome sequences of the three species were downloaded from GenBank, and 21 shared coding sequences were screened. Codon usage patterns were analyzed using CodonW 1.4.2 and CUSP software. Key parameters, including the relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI), codon bias index (CBI), and frequency of optimal codons (Fop), were calculated. Phylogenetic trees and RSCU clustering maps were constructed to explore evolutionary relationships. Results: The GC contents of the mitochondrial genomes followed the order of GC1 > GC2 > GC3. ENC values averaged above 35, while CAI, CBI, and Fop values ranged from 0.160 to 0.161, −0.078 to −0.076, and 0.362 to 0.363, respectively, indicating a weak preference for codons ending with A/U. Correlation and neutrality analyses suggested that codon usage bias was influenced by both mutation pressure and natural selection, with natural selection being the dominant factor. Fifteen optimal codons, predominantly ending with A/U, were identified. Phylogenetic analysis confirmed the close relationship among the three Medicago species, consistent with traditional taxonomy, whereas the RSCU clustering did not align with the phylogenetic relationships. Conclusions: This study provides insights into the mitochondrial codon usage patterns and their evolutionary determinants in Medicago species, highlighting the predominant role of natural selection in shaping codon usage bias. The findings offer a foundation for comparative genomic studies and evolutionary analyses and may be beneficial for improving genetic engineering and breeding programs of Medicago species. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

14 pages, 3990 KiB  
Article
TNF Signaling Pathway Is the Key Pathway Regulated by Disitamab Vedotin in Bladder Cancer Cells
by Xingxing Tang, Jia Liu, Qiang Zhao, Yudong Cao, Xiao Yang, Peng Du and Yong Yang
Curr. Issues Mol. Biol. 2025, 47(5), 369; https://doi.org/10.3390/cimb47050369 - 18 May 2025
Viewed by 506
Abstract
Disitamab Vedotin has shown good therapeutic efficacy against bladder cancer. Although its mechanism is clear, the regulation of gene expression in bladder cancer cells by Disitamab Vedotin is not fully understood. We searched the GEO database and identified the GSE237789 dataset, in which [...] Read more.
Disitamab Vedotin has shown good therapeutic efficacy against bladder cancer. Although its mechanism is clear, the regulation of gene expression in bladder cancer cells by Disitamab Vedotin is not fully understood. We searched the GEO database and identified the GSE237789 dataset, in which researchers treated the bladder cancer cell line SW780 with Disitamab Vedotin and performed high-throughput transcriptome sequencing. Compared with the control SW780 cells, the expression levels of the vast majority of genes (16,223/16,390, 98.98%) in Disitamab Vedotin-treated SW780 cells remained unchanged. Only one hundred fifty-nine genes (0.97%) were upregulated, and eight genes (0.05%) were downregulated. Enrichment analysis results showed that the related differentially expressed genes (DEGs) were mainly enriched in the TNF signaling pathway, NF-κB signaling pathway, and other pathways. Protein–protein interaction analysis revealed that 10 genes, TNF, IL1B, IL1A, CXCL8, CXCL1, CCL2, MMP9, ICAM1, CXCL10, and CCL20, had the highest connectivity, and all of these genes belong to the TNF signaling pathway. These results suggest that the TNF signaling pathway is the key pathway regulated by Disitamab Vedotin in bladder cancer cells, which may represent a stress response of bladder cancer cells to Disitamab Vedotin. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

20 pages, 5273 KiB  
Article
Geometric Accuracy Design and Tolerance Allocation of Precision Horizontal Machining Centers
by Lina Wang, Xingxing Liu, Wenjie Tian and Dawei Zhang
Machines 2025, 13(3), 187; https://doi.org/10.3390/machines13030187 - 26 Feb 2025
Cited by 1 | Viewed by 1655
Abstract
As the structural complexity of machined components increases and the pace of product updates accelerates, the demands for machining precision in CNC machine tools are becoming increasingly rigorous. Consequently, the continuous enhancement of machining accuracy in machine tools presents a significant challenge that [...] Read more.
As the structural complexity of machined components increases and the pace of product updates accelerates, the demands for machining precision in CNC machine tools are becoming increasingly rigorous. Consequently, the continuous enhancement of machining accuracy in machine tools presents a significant challenge that must be addressed within the realms of machine tool innovation and the development of manufacturing equipment. This paper conducts a comprehensive investigation into the tolerance optimization allocation method for geometric accuracy in precision horizontal machining centers utilizing interval theory. Initially, a mapping model is developed to represent each source of geometric error and the overall spatial error, drawing upon multi-body system theory. Subsequently, the global maximum interval sensitivity of each geometric error source in relation to the overall spatial model is analyzed. Finally, an interval optimization model for geometric accuracy is formulated based on interval optimization theory, employing a genetic algorithm to address the accuracy allocation problem associated with various error sources in machine tools. Full article
Show Figures

Figure 1

19 pages, 19180 KiB  
Article
Flow-Induced Strength Analysis of Large Francis Turbine Under Extended Load Range
by Xingping Liu, Xingxing Huang, Weijiang Chen and Zhengwei Wang
Appl. Sci. 2025, 15(5), 2422; https://doi.org/10.3390/app15052422 - 24 Feb 2025
Viewed by 990
Abstract
To meet the load requirements of the power grid, the hydroelectric power plants need to extend the operational load range of the turbine units, which are often operated under off-design operating conditions. This new challenge significantly changes the flow characteristics of the hydro [...] Read more.
To meet the load requirements of the power grid, the hydroelectric power plants need to extend the operational load range of the turbine units, which are often operated under off-design operating conditions. This new challenge significantly changes the flow characteristics of the hydro turbine units. Strong vibrations and high stresses caused by pressure pulsations at various loads directly lead to severe damage to the runner blades, threatening the safe operation of the hydropower unit. In this study, the detailed flow dynamics analysis under three loading conditions of a large-scale Francis turbine, i.e., 33.3%, 66.6%, and 100% of the Francis turbine’s rated power, is investigated with computational fluid dynamics (CFD) calculations. The pressure files at different operating conditions are adopted to carry out the corresponding flow-induced strength analysis of the Francis runner prototype. The pressure distributions and flow velocity distributions at these three typical operating conditions are studied, and the maximum stress of the runner gradually increases with the power output of the turbine, but it is only around one-third of the yield stress of the runner material. It reveals that the runner is safe to operate in the extended operation range from a 33.3% to 100% of the rated power load. The analysis approach in this work can be applied to other hydraulic machinery including Francis turbines, pumps and pump–turbines. Full article
Show Figures

Figure 1

23 pages, 9235 KiB  
Review
Recent Advances in Resveratrol Derivatives: Structural Modifications and Biological Activities
by Xiaohan Liu, Jian Pei, Jiahui Li, Huiyu Zhu, Xiaoyu Zheng, Xingxing Zhang, Banfeng Ruan and Liuzeng Chen
Molecules 2025, 30(4), 958; https://doi.org/10.3390/molecules30040958 - 19 Feb 2025
Cited by 3 | Viewed by 1845
Abstract
Resveratrol, a naturally occurring phenolic stilbene molecule, has been intensively researched for its anti-inflammatory, anticancer, antioxidant, antibacterial, and neuroprotective properties. However, due to its limited absorption and probable hepatotoxicity, it is difficult to employ directly as a medication, limiting its therapeutic applicability. Over [...] Read more.
Resveratrol, a naturally occurring phenolic stilbene molecule, has been intensively researched for its anti-inflammatory, anticancer, antioxidant, antibacterial, and neuroprotective properties. However, due to its limited absorption and probable hepatotoxicity, it is difficult to employ directly as a medication, limiting its therapeutic applicability. Over the last five years, numerous structural changes in resveratrol have been widely studied, resulting in considerable improvements in pharmacological activity and drug availability. This work reviews the biological activities and structure–activity relationships (SARs) of resveratrol derivatives, with the goal of providing useful insights for the discovery of new resveratrol derivatives. Full article
Show Figures

Figure 1

19 pages, 15754 KiB  
Article
Time Lag Analysis of Atmospheric CO2 and Proxy-Based Climate Stacks on Global–Hemispheric Scales in the Last Deglaciation
by Zhi Liu and Xingxing Liu
Quaternary 2025, 8(1), 11; https://doi.org/10.3390/quat8010011 - 18 Feb 2025
Viewed by 1111
Abstract
Based on 88 well-dated and high-resolution paleoclimate records, global and hemispheric stacks of the last deglacial climate were synthesized by utilizing the normalized average method. A sequential relationship between the West Antarctic Ice Sheet Divide ice core CO2 concentration and the composited [...] Read more.
Based on 88 well-dated and high-resolution paleoclimate records, global and hemispheric stacks of the last deglacial climate were synthesized by utilizing the normalized average method. A sequential relationship between the West Antarctic Ice Sheet Divide ice core CO2 concentration and the composited proxy-based global–hemispheric climate stacks was detected using the Wilcoxon rank-sum test and wavelet analysis. The results indicate that the climate stack of the Northern Hemisphere started to increase slowly before 22 kabp, possibly due to the enhancement of summer insolation at high northern latitudes, the onset of warming in the Southern Hemisphere occurred around 19 kabp, and the atmospheric CO2 concentration began to raise around 18.1 kabp. This suggests that the change in northern high-latitude summer insolation was the initial trigger of the last deglaciation, and atmospheric CO2 concentration was an internal feedback associated with global ocean circulation in the Earth’s system. Both the Wilcoxon rank-sum test and wavelet analysis showed that during the BØlling–AllerØd and the Younger Dryas periods there was no obvious asynchrony between the global climate and atmospheric CO2 concentration, which perhaps implies a fast feedback–response mechanism. The seesawing changes in interhemispheric climate and the abrupt variations in the atmospheric CO2 concentration could be explained by the influences of Atlantic meridional overturning circulation strength during the BØlling–AllerØd and the Younger Dryas periods. This reveals that Atlantic meridional overturning circulation played an important role in the course of the last deglaciation. Full article
Show Figures

Figure 1

18 pages, 5358 KiB  
Article
Liquid–Liquid Flow and Mass Transfer Enhancement in Tube-in-Tube Millireactors with Structured Inserts and Advanced Inlet Designs
by Feng Zhu, Xingxing Pan, Xichun Cao, Yandan Chen, Rijie Wang, Jiande Lin and Hanyang Liu
Fluids 2025, 10(2), 26; https://doi.org/10.3390/fluids10020026 - 24 Jan 2025
Viewed by 915
Abstract
Liquid–liquid mass transfer is crucial in chemical processes like extraction and desulfurization. Traditional tube-in-tube millireactors often overlook internal flow dynamics, focusing instead on entry modifications. This study explores mass transfer enhancement through structured inserts (twisted tapes, multi-blades) and inlet designs (multi-hole injectors, T-mixers). [...] Read more.
Liquid–liquid mass transfer is crucial in chemical processes like extraction and desulfurization. Traditional tube-in-tube millireactors often overlook internal flow dynamics, focusing instead on entry modifications. This study explores mass transfer enhancement through structured inserts (twisted tapes, multi-blades) and inlet designs (multi-hole injectors, T-mixers). Using high-speed imaging and water–succinic acid–butanol experiments, flow patterns and mass transfer rates were analyzed. Results show annular and dispersion flows dominate under tested conditions with structured inserts lowering the threshold for dispersion flow. Multi-hole injectors improved mass transfer by over 40% compared to T-mixers in plain tubes, while C-tape inserts achieved the highest volumetric mass transfer coefficient (2.43 s−1) due to increased interfacial area and droplet breakup from energy dissipation. This approach offers scalable solutions to enhance tube-in-tube millireactor performance for industrial applications. Full article
(This article belongs to the Special Issue Mass Transfer in Multiphase Reactors)
Show Figures

Figure 1

12 pages, 12522 KiB  
Article
Enhance Oil Recovery in Fracture-Cave Carbonate Reservoirs Using Zwitterion-Anionic Composite Surfactant System
by Wei Peng, Qing You, Xiaoqiang Liu, Bojie Zhou, Xingxing Ding, Yuechun Du and Liangfei Xiao
Energies 2025, 18(2), 383; https://doi.org/10.3390/en18020383 - 17 Jan 2025
Viewed by 868
Abstract
The carbonate fracture-cave reservoir in the Tahe oilfield, China, encounters development challenges because of its substantial burial depth (exceeding 5000 m). Its characteristics are low permeability, pronounced heterogeneity, extensive karst cavern systems, diverse connection configurations, and intricate spatial distribution. Prolonged conventional water flooding [...] Read more.
The carbonate fracture-cave reservoir in the Tahe oilfield, China, encounters development challenges because of its substantial burial depth (exceeding 5000 m). Its characteristics are low permeability, pronounced heterogeneity, extensive karst cavern systems, diverse connection configurations, and intricate spatial distribution. Prolonged conventional water flooding leads to predominant water channels, resulting in water channeling and limited sweep efficiency. Surfactant flooding is usually adopted in these conditions because it can mitigate water channeling and enhance sweep efficiency by lowering the interfacial tension (it refers to the force that is generated due to the unbalanced molecular attraction on the liquid surface layer and causes the liquid surface to contract) between oil and water. Nonetheless, the Tahe oilfield is a carbonate reservoir where surfactant is prone to loss near the well, thereby limiting its application. High-pressure injection flooding technology is an innovative method that utilizes injection pressure higher than the formation rupture pressure to alter reservoir permeability, specifically in low-permeability oil fields. Because of the high fluid flow rate, the contact time with the interface is decreased, enabling the ability for surfactants to reach the deep reservoir. In this article, based on the mixed adsorption mechanism of two surfactants and the hydrophilic and lipophilic equilibrium mechanisms, a set of high-temperature and high-salinity resistance surfactant systems appropriate for the Tahe oilfield is developed and its associated performance is evaluated. An oil displacement experiment is carried out to examine the effect of surfactant flooding by high-pressure injection. The results demonstrate that the ideal surfactant system can lower the interfacial tension to 10−2 mN/m and its capacity to reduce the interfacial tension to 10−2 mN/m after different aging periods. Besides, the surfactant system possesses excellent wettability (wetting angle changed from 135° to 42°) and certain emulsifying abilities. The oil displacement experiment shows that the oil recovery rate of surfactant flooding by high pressure reaches 26%. The effect of surfactant flooding by high-pressure injection is better than that of high-pressure injection flooding. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

28 pages, 21218 KiB  
Article
Exploitation of Key Regulatory Modules and Genes for High-Salt Adaptation in Schizothoracine by Weighted Gene Co-Expression Network Analysis
by Luo Lei, Xingxing Deng, Fei Liu, He Gao, Yuting Duan, Junting Li, Suxing Fu, Hejiao Li, Yinhua Zhou, Rongrong Liao, Haiping Liu and Chaowei Zhou
Animals 2025, 15(1), 56; https://doi.org/10.3390/ani15010056 - 29 Dec 2024
Viewed by 1191
Abstract
Schizothoracine fishes in saltwater lakes of the Tibetan Plateau are important models for studying the evolution and uplift of the Tibetan Plateau. Examining their adaptation to the high-salt environment is interesting. In this study, we first assembled the RNA-Seq data of each tissue [...] Read more.
Schizothoracine fishes in saltwater lakes of the Tibetan Plateau are important models for studying the evolution and uplift of the Tibetan Plateau. Examining their adaptation to the high-salt environment is interesting. In this study, we first assembled the RNA-Seq data of each tissue of G. przewalskii, G. selincuoensis, and G. namensis from Qinghai Lake, Selincuo Lake, and Namtso Lake, respectively, obtained by the group previously. After obtaining reliable results, the adaptation of the gills, kidneys, and livers of the three species to the high-salinity environment was assessed by weighted gene co-expression network analysis (WGCNA). Using module eigengenes (ME), 21, 22, and 22 gene modules were identified for G. przewalskii, G. selincuoensis, and G. nemesis, respectively. Functional clustering analysis of genes in the significant association module identified several genes associated with osmolarity-regulated potential KEGG pathways in the gills of three species of Schizothoracine fish. Th17 cell differentiation pathway was up-regulated in the gills of all three species; histocompatibility class 2 II antigen and E alpha (h2-ea) were up-regulated genes in this pathway. Functional clustering analysis of genes in apparently related modules in the kidney unveiled several differential KEGG pathways. The pentose phosphate pathway was up-regulated in the three Schizothoracine fishes, and glucose-6-phosphate dehydrogenase (g6pd) was an up-regulated gene in this pathway. In the livers of the three Schizothorax species, the propanoate metabolism pathway was up-regulated, and succinate-CoA ligase GDP-forming subunit beta (suclg2) was an up-regulated gene in this pathway. The above analyses provide reference data for the adaptation of Schizothorax to high-salt environments and lay the foundation for future studies on the adaptive mechanism of Schizothorax in the plateau. These results partly fill the void in the knowledge gap in the survival adaptations of Schizothoracine fishes to highland saline lakes. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

15 pages, 10248 KiB  
Article
Flow-Induced Fatigue Damage of Large Francis Turbines Under Multiple Operating Loads
by Pinghu Liu, Xingxing Huang, Tianyu Yang and Zhengwei Wang
Appl. Sci. 2024, 14(24), 12003; https://doi.org/10.3390/app142412003 - 21 Dec 2024
Cited by 2 | Viewed by 1272
Abstract
The Francis runner is a critical component of the Francis turbine generator unit, playing a central role in converting water energy into rotating mechanical energy that drives the generator in hydropower stations. In-depth analyses of the flow characteristics of the Francis runner under [...] Read more.
The Francis runner is a critical component of the Francis turbine generator unit, playing a central role in converting water energy into rotating mechanical energy that drives the generator in hydropower stations. In-depth analyses of the flow characteristics of the Francis runner under various operating conditions and avoiding fatigue damage of the Francis runner are crucial to the reliability and efficiency of hydropower operation. In this paper, the flow dynamics of a large Francis turbine runner are analyzed under three representative loading conditions—low partial load, high partial load, and full load—and the flow-induced stress of the runner is analyzed under these loading conditions. It was found that the maximum static and dynamics stresses of the runner at three representative loading conditions are located at the chamfered surface where the blade trailing edge connects to the runner crown. The maximum static stresses of the Francis runner are 284 MPa, 352 MPa, and 381 MPa at low partial load, high partial load, and full load, respectively, and they are above the allowable stress limits, as half of the yield stress of the runner material of 550 MPa. The peak-to-peak values of runner dynamic stress at low partial load, high partial load, and full load are 15 MPa, 25 MPa, and 14.6 MPa, respectively. The high stress invoked by the unsteady flow under various loading conditions in this runner was the cause of the fatigue breakage of the runner blades. The results of this investigation have important reference values for mitigating fatigue damage in similar Francis runners and optimizing unit operation. Full article
Show Figures

Figure 1

Back to TopTop