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Abstract: As the structural complexity of machined components increases and the pace of
product updates accelerates, the demands for machining precision in CNC machine tools are
becoming increasingly rigorous. Consequently, the continuous enhancement of machining
accuracy in machine tools presents a significant challenge that must be addressed within the
realms of machine tool innovation and the development of manufacturing equipment. This
paper conducts a comprehensive investigation into the tolerance optimization allocation
method for geometric accuracy in precision horizontal machining centers utilizing interval
theory. Initially, a mapping model is developed to represent each source of geometric error
and the overall spatial error, drawing upon multi-body system theory. Subsequently, the
global maximum interval sensitivity of each geometric error source in relation to the overall
spatial model is analyzed. Finally, an interval optimization model for geometric accuracy is
formulated based on interval optimization theory, employing a genetic algorithm to address
the accuracy allocation problem associated with various error sources in machine tools.

Keywords: precision horizontal machining center; interval theory; geometric error modeling;
interval sensitivity analysis; optimal allocation of geometric accuracy

1. Introduction
Accuracy serves as a critical metric for evaluating the performance of CNC machine

tools, as it is intrinsically linked to product quality, production timelines, manufactur-
ing costs, and overall market competitiveness [1]. As the complexity of machined parts
increases and product innovations accelerate, the demands for machining accuracy in
machine tools have become increasingly stringent [2]. Consequently, the continuous enhance-
ment of machining accuracy presents a significant challenge that must be addressed to foster
advancements in machine tool technology and the broader equipment manufacturing sector.

Several factors influence the accuracy of machine tools, including geometric errors,
thermal errors, assembly errors, cutting-related errors, and errors associated with fixtures.
Notably, geometric errors contribute to approximately 20–30% of the total error in machine
tools. Therefore, it is imperative to conduct geometric accuracy design prior to the manu-
facturing and assembly processes to effectively enhance the spatial accuracy of the entire
machine [3–5]. Geometric accuracy design encompasses two primary components: geomet-
ric accuracy analysis and geometric accuracy allocation. The former involves estimating
the spatial error of the entire machine based on the known geometric errors of individual
components utilizing a spatial error model [6]. The latter, geometric accuracy allocation,
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entails determining the geometric error for each component through a precision reverse
model or a precision optimization distribution model, thus falling under the category of
reverse precision design [7,8].

Research on geometric accuracy design is typically structured around three key steps:
geometric error modeling [9–11], geometric sensitivity analysis [12–14], and geometric error
distribution [15]. In the realm of error modeling, the geometric error modeling approach
grounded in multi-body system theory has garnered significant attention [16]. This theory
allows for the abstraction of mechanical systems and effectively characterizes their motion
properties, rendering it a robust and efficient modeling technique. The geometric error
modeling method based on multi-body system theory consolidates structural errors and
kinematic pair errors into motion transformation matrices and structural transformation
matrices, respectively. It integrates various error components, including geometric, thermal,
and load-related errors, into the structural and motion error terms, thereby establishing
a comprehensive expression for the spatial error of machine tools. This methodology
is characterized by its broad applicability, systematic specification, and straightforward
derivation process, enabling rapid modeling through computer programming, albeit with
limitations in computational efficiency.

The contemporary landscape of geometric error sensitivity analysis is primarily con-
cerned with various analytical methods for assessing sensitivity, including traditional
approaches such as the difference method, perturbation method, and matrix differential
method. A notable challenge associated with the difference and perturbation methods is
the determination of an appropriate step size, which can lead to a substantial increase in
the workload required for sensitivity calculations. In a study conducted by Chen et al. [17],
the local sensitivity analysis method was employed to investigate the sensitivity of 37 error
sources related to spatial errors in five-axis ultra-precision machine tools, with the findings
subsequently applied to the design and manufacturing processes of these machines [18].
Additionally, an interval analysis method for parameter sensitivity was utilized to analyze
the sensitivity of a plane strain structural foundation model, resulting in the derivation of a
sensitivity factor matrix for eight parameters of the Duncan–Chang model [19]. Ye et al. [20]
examined the sensitivity of manufacturing and assembly errors in relation to machine
tool spatial errors using the difference method, identifying key manufacturing errors that
influence machine tool spatial errors, thereby providing a theoretical foundation for the
accuracy distribution of machine tools. The matrix differential method can impose specific
requirements on the form of the sensitivity solution [21]. However, in cases where the
response function is discontinuous or non-differentiable, achieving a sensitivity solution
using the aforementioned methods can be problematic. From a statistical perspective,
researchers have proposed a sensitivity analysis method based on the Monte Carlo ap-
proach to address error modeling. Nonetheless, the Monte Carlo method entails significant
computational demands, particularly when applied to implicit limit state equations [22].
Although the use of importance sampling can mitigate computational burdens, it is not
well suited for addressing small-probability problems. In contrast, sensitivity analysis
methods grounded in interval theory offer a viable solution to the limitations of traditional
sensitivity calculation techniques, particularly in the context of nonlinear systems, where
they demonstrate enhanced computational efficiency and accuracy in results.

For precision machine tools, the sensitivity of different geometric error sources to
the overall spatial error of the machine tool exhibits variability. Concurrently, the degree
of control over these geometric error sources during the manufacturing and assembly
processes also differs [23]. In actual manufacturing and assembly processes, the magnitude
of each error source is often not a fixed number but rather an interval with associated
errors [24]. Using a tolerance optimization allocation method that assumes equal precision
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or equal impact can inevitably lead to tolerances of geometric errors being either too large
or too small in practical design and manufacturing [25–27]. Excessively high precision
can result in unnecessary cost waste, while excessively low precision may fail to meet the
design requirements for the overall spatial accuracy of the machine [28].

This article studies the optimization allocation method for the geometric accuracy of
precision horizontal machining centers based on interval theory. First, a mapping model
between various geometric error sources and the overall spatial error of the machine
is established based on multi-body system theory. Then, the interval sensitivity of each
geometric error source to the overall spatial error of the machine is analyzed across the entire
working space. Finally, an optimization allocation method for manufacturing tolerances
of components based on interval optimization algorithms is proposed, and a genetic
algorithm is used to solve for the tolerance bands corresponding to each error source of the
machine tool.

2. Geometric Error Modeling
Geometric error modeling is a prerequisite for optimizing the allocation of geometric

accuracy, and the accuracy of the model directly determines the accuracy of the optimized
allocation results. Therefore, in-depth research on geometric error modeling methods is
particularly important. This article takes the µ2000/800H four-axis horizontal machining
center as an example (see Figure 1), which adopts an inverted T-shaped column mobile
structure consisting of X, Y, Z translational axes and B rotational axes.
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Figure 1. The µ2000/800H horizontal machining center.

In this paper, a general geometric error modeling method based on multi-body system
theory is studied. First, the low-order body array is calculated according to the topological
structure of the machine tool. Secondly, the characteristic matrix between adjacent bodies
is derived by using homogeneous coordinates transformation. Finally, the spatial error
model of the whole machine is obtained by applying the motion synthesis principle.

The machine bed is selected as a typical body, and the workpiece kinematic chain is
formed in the following order: machine bed, X-direction sliding seat, B-direction turntable,
and workpiece. The cutter kinematic chain is established in the order of lathe bed, column,
headstock, and spindle. Table 1 presents the low-order body arrays for each component of
this multi-body system. L represents the low-order body operator in the low-order body
array description method of the multi-body system.
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Table 1. Low-order sequence of the µ2000/800H horizontal machining center.

i 0 1 2 3 4 5 6 7

L0(i) 0 1 2 3 4 5 6 7
L1(i) 0 0 1 2 0 4 5 6
L2(i) 0 0 0 1 0 0 4 5
L3(i) 0 0 0 0 0 0 0 4
L4(i) 0 0 0 0 0 0 0 0

The relative position and orientation changes between typical bodies in space can be
determined through appropriate transformations of the connected coordinate systems fixed
to them, thereby achieving a mathematical description of the multi-body systems. The
relative stillness of two adjacent bodies can be considered a state of motion characterized
by zero velocity; thus, only the motion transformation of these bodies when relative motion
occurs will be examined. According to the principles of dynamics, when analyzing the
free motion between two adjacent bodies, it is typically regarded as a combination of
translational and rotational motion. This article will employ this approach to investigate
the transformation matrix and geometric description of adjacent bodies.

The transformation of position and orientation in space typically employs a homogeneous
transformation matrix. For instance, when one body is moving relative to another, the
homogeneous transformation matrix that represents its motion characteristics is as follows:

Tij =

[
Rij pij

0 1

]
(1)

Due to manufacturing and assembly errors in the production process of machine
tool components, six types of motion errors can occur when any two adjacent bodies are
in relative motion. The free motion between any two adjacent bodies in space can be
synthesized through six fundamental motions. Consequently, by understanding the motion
error generated by each basic motion, the overall motion error can be determined through
motion synthesis. Taking the X-axis and B-axis as examples, the geometric interpretations
of the six motion errors associated with their movements are illustrated in Figures 2 and 3.

In general, when the motion axes of the machine tool are in a state of relative static
or relative motion, six motion errors will occur. Consequently, the spatial error of the
entire machine can be synthesized from the motion errors of each individual axis. For
a motion system consisting of n + 1 components, we establish corresponding Cartesian
coordinate systems Oi − xyz (i = 0, 1, 2, · · · , n) on all components and set the machine
body coordinate system as O0 − xyz, the tool coordinate system as O − xtytzt, and the
workpiece coordinate system as O − xwywzw (see Figure 1).

Machines 2025, 13, x FOR PEER REVIEW 4 of 20 
 

 

Table 1. Low-order sequence of the µ2000/800H horizontal machining center. 𝒊 0 1 2 3 4 5 6 7 𝐿଴(𝑖) 0 1 2 3 4 5 6 7 𝐿ଵ(𝑖) 0 0 1 2 0 4 5 6 𝐿ଶ(𝑖) 0 0 0 1 0 0 4 5 𝐿ଷ(𝑖) 0 0 0 0 0 0 0 4 𝐿ସ(𝑖) 0 0 0 0 0 0 0 0 

The relative position and orientation changes between typical bodies in space can be 
determined through appropriate transformations of the connected coordinate systems 
fixed to them, thereby achieving a mathematical description of the multi-body systems. 
The relative stillness of two adjacent bodies can be considered a state of motion character-
ized by zero velocity; thus, only the motion transformation of these bodies when relative 
motion occurs will be examined. According to the principles of dynamics, when analyzing 
the free motion between two adjacent bodies, it is typically regarded as a combination of 
translational and rotational motion. This article will employ this approach to investigate 
the transformation matrix and geometric description of adjacent bodies. 

The transformation of position and orientation in space typically employs a homoge-
neous transformation matrix. For instance, when one body is moving relative to another, 
the homogeneous transformation matrix that represents its motion characteristics is as 
follows: 𝑻௜௝ = ൤𝑹௜௝ 𝒑௜௝0 1 ൨ (1)

Due to manufacturing and assembly errors in the production process of machine tool 
components, six types of motion errors can occur when any two adjacent bodies are in 
relative motion. The free motion between any two adjacent bodies in space can be synthe-
sized through six fundamental motions. Consequently, by understanding the motion er-
ror generated by each basic motion, the overall motion error can be determined through 
motion synthesis. Taking the X-axis and B-axis as examples, the geometric interpretations 
of the six motion errors associated with their movements are illustrated in Figures 2 and 
3. 

Axis X

 

Figure 2. Geometrical significance of six motion errors along the X-axis. 
Figure 2. Geometrical significance of six motion errors along the X-axis.



Machines 2025, 13, 187 5 of 20
Machines 2025, 13, x FOR PEER REVIEW 5 of 20 
 

 

Axis B

 

Figure 3. Geometrical significance of six motion errors around the B-axis. 

In general, when the motion axes of the machine tool are in a state of relative static 
or relative motion, six motion errors will occur. Consequently, the spatial error of the en-
tire machine can be synthesized from the motion errors of each individual axis. For a mo-
tion system consisting of n + 1 components, we establish corresponding Cartesian coordi-
nate systems 𝑂௜ − 𝑥𝑦𝑧 (𝑖 = 0,1,2,⋅⋅⋅, 𝑛) on all components and set the machine body coor-
dinate system as 𝑂଴ − 𝑥𝑦𝑧, the tool coordinate system as 𝑂 − 𝑥௧𝑦௧𝑧௧, and the workpiece 
coordinate system as 𝑂 − 𝑥௪𝑦௪𝑧௪ (see Figure 1). 

Suppose the homogeneous coordinate value of the tool tip in the workpiece coordi-
nate system  𝑂ଷ − 𝑥𝑦𝑧 is 𝑷௧ = [0 0 𝑡 1]், (2)

where 𝑡 represents the length of the tool. 
The homogeneous coordinate value of the tool tip on the tool coordinate system  𝑂଻ − 𝑥𝑦𝑧 is 𝑷௪ = [𝑥௪ 𝑦௪ 𝑧௪ 1]். (3)

Under ideal conditions, the homogeneous coordinate value of the tool point in the 
bed coordinate system  𝑂଴ − 𝑥𝑦𝑧 is 𝑷௧_௜ௗ௘௔௟ = ∏ 𝑻௅೔(଻)௅೔షభ(଻)௣𝑻௅೔(଻)௅೔షభ(଻)௦𝑷௧௜ୀଵ௜ୀସ,௅ర(଻)ୀ଴ , (4)

where 𝑻௅೔(଻)௅೔షభ(଻)௣  and 𝑻௅೔(଻)௅೔షభ(଻)௦  represent the ideal translation transformation ma-
trix and the rotation transformation matrix of component i relative to component i − 1 in 
the tool kinematic chain, respectively. 

The homogeneous coordinate value of the point to be cut on the workpiece in the 
system  𝑂଴ − 𝑥𝑦𝑧 is 𝑷௪_௜ௗ௘௔௟ = ∏ 𝑻௅ೕ(ଷ)௅ೕషభ(ଷ)௣𝑻௅ೕ(ଷ)௅ೕషభ(ଷ)௦𝑷௪௝ୀଵ௝ୀଷ,௅೙(ଷ)ୀ଴ , (5)

where 𝑻௅ೕ(ଷ)௅ೕషభ(ଷ)௣ and 𝑻௅ೕ(ଷ)௅ೕషభ(ଷ)௦ represent the ideal translation transformation ma-
trix and the rotation transformation matrix of component i relative to component i − 1 in 
the workpiece kinematic chain, respectively. 

Under ideal conditions, if the tool tip point and the point to be cut on the workpiece 
coincide, there are 𝑷௧_௜ௗ௘௔௟ = 𝑷௪_௜ௗ௘௔௟. (6)

In actual conditions, the homogeneous coordinate value of the tool tip in the 𝑂 −𝑥଴𝑦଴𝑧଴ is 𝑷௧_௔௖௧௨௔௟ = ∏ 𝑻௅೔(଻)௅೔షభ(଻)௣Δ𝑻௅೔(଻)௅೔షభ(଻)௣𝑻௅೔(଻)௅೔షభ(଻)௦Δ𝑻௅೔(଻)௅೔షభ(଻)௦𝑷௧௜ୀଵ௜ୀସ,௅೙(଻)ୀ଴ ,  (7)

where Δ𝑻 represents the error transformation matrix corresponding to 𝑻. 

Figure 3. Geometrical significance of six motion errors around the B-axis.

Suppose the homogeneous coordinate value of the tool tip in the workpiece coordinate
system O3 − xyz is

Pt =
[
0 0 t 1

]T
, (2)

where t represents the length of the tool.
The homogeneous coordinate value of the tool tip on the tool coordinate system

O7 − xyz is

Pw =
[

xw yw zw 1
]T

. (3)

Under ideal conditions, the homogeneous coordinate value of the tool point in the bed
coordinate system O0 − xyz is

Pt_ideal = ∏i=1
i=4,L4(7)=0TLi(7)Li−1(7)pTLi(7)Li−1(7)sPt, (4)

where TLi(7)Li−1(7)p and TLi(7)Li−1(7)s represent the ideal translation transformation matrix
and the rotation transformation matrix of component i relative to component i − 1 in the
tool kinematic chain, respectively.

The homogeneous coordinate value of the point to be cut on the workpiece in the
system O0 − xyz is

Pw_ideal = ∏
j=1
j=3,Ln(3)=0TLj(3)Lj−1(3)pTLj(3)Lj−1(3)sPw, (5)

where TLj(3)Lj−1(3)p and TLj(3)Lj−1(3)s represent the ideal translation transformation matrix
and the rotation transformation matrix of component i relative to component i − 1 in the
workpiece kinematic chain, respectively.

Under ideal conditions, if the tool tip point and the point to be cut on the workpiece
coincide, there are

Pt_ideal = Pw_ideal . (6)

In actual conditions, the homogeneous coordinate value of the tool tip in the O− x0y0z0 is

Pt_actual = ∏i=1
i=4,Ln(7)=0TLi(7)Li−1(7)p∆TLi(7)Li−1(7)pTLi(7)Li−1(7)s∆TLi(7)Li−1(7)sPt, (7)

where ∆T represents the error transformation matrix corresponding to T.
The homogeneous coordinate value of the point to be cut on the workpiece in the

O − x0y0z0 is

Pw_actual = ∏
j=1
j=3,Ln(3)=0TLj(3)Lj−1(3)p∆TLj(3)Lj−1(3)pTLj(3)Lj−1(3)s∆TLj(3)Lj−1(3)sPw. (8)
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Under actual conditions, the difference between the tool tip position and the homoge-
neous coordinate value of the point to be cut on the workpiece represents the spatial error.
Therefore, the spatial error is defined as follows:

∆r = Pt_actual − Pw_actual =
(

∆X4 ∆Y4 ∆Z4 1
)T

(9)

where ∆X4, ∆Y4, and ∆Z4 represent the position error components of the four-axis machine
tool in three directions.

From the spatial error model derived above, it is evident that the spatial error of the
entire machine is influenced not only by 29 geometric error sources but also by the machine
tool’s coordinate position and specific structural parameters [11].

For the aforementioned µ2000/800H, if we consider only the three translational axes
X, Y, and Z, without accounting for the rotational B-axis movement, it can be simplified into
a three-axis horizontal machining center. This configuration involves a total of 21 sources
of geometric error. Based on the modeling method discussed in the previous research, the
specific derivation process will not be elaborated upon here. It can be concluded that the
spatial error of the three-axis horizontal machining center is

∆r = Pt_actual_3 − Pw_actual_3 =
(

∆X3 ∆Y3 ∆Z3 1
)T

, (10)

where ∆X3, ∆Y3, and ∆Z3 represent the position error components of the three-axis machine
tool in three directions.

3. Interval Sensitivity Analysis
Sensitivity refers to the extent to which variations in system input parameters influence

changes in the system’s response. In the design and manufacturing process, conducting
sensitivity analysis on the input parameters is essential for understanding the impact of
different inputs on the system’s response. This analysis ultimately aids in optimizing the
system design methodology.

For a system with input parameters, the response function is denoted as F(x). If F(x) is
differentiable, then the first-order sensitivity of the input parameter with respect to F(x) is
given by

Si =
∂F(x)

∂xi
, (i = 1, 2, · · · , n) (11)

or

Si =
∆F(x)

∆xi
. (12)

According to the definition provided, the first-order sensitivity of the geometric error
∆r in the four-axis horizontal machining center to the spatial error of the entire machine is

Si =
∆r(e)
∆ei

. (13)

And the error model of the entire machine can be expressed in the following form:

∆r = Ae =
[
Aδ Aε

](
eδ eε

)T
(14)

where ∆r =
(

∆X ∆Y ∆Z
)T

represents the spatial error between the tool tip point and
the point to be cut on the workpiece, A represents the corresponding error-mapping matrix,
e represents the geometric error source vector, Aδ and Aε represent the corresponding error
mapping matrix, and eδ(eε) represents the positional (angular) error source vector.



Machines 2025, 13, 187 7 of 20

The elements in Aε are the function of the coordinates of machine tool motion, A(x,y,z,t)
ε

can be used to represent the error mapping matrix corresponding to the angular error
source of the machine tool motion parameters (x, y, z, t). Then, the interval expansion
factor from the mth angle error source [eεm] to the ith spatial error component [∆ri] is

ηεim
(x,y,z,t) = Aεim

(x,y,z,t). (15)

In precision machine tools, manufacturing and installation errors in the guide rails
can lead to angular errors when moving parts traverse along the axis. Consequently, these
angular errors generate position error components at any point within the processing
space. This position error component is referred to as an Abbe error. Figure 4 illustrates
the Abbe error resulting from the pitch angle of the X-axis. It is important to note that
the factor influencing the accuracy design of the machine tool is εz(x)·y rather than
the machining error εz(x)·η(x,y,z,t) that occurs in the X-axis direction. Therefore, when
considering the sources of angular error, the presence of Abbe error indicates that the
interval expansion factor cannot be employed directly as a measure of sensitivity. Based on
these considerations, we define the sensitivity Sεim of the angular error [eεm] to the spatial
error component [∆ri] as follows:

Sεim = η
(x,y,z,t)
εim − η

(0,0,0,0)
εim (16)

where η
(0,0,0,0)
εim is the interval expansion factor from the mth angle error [eεm] to the ith

spatial error component [∆ri] when the three axes are located at the origin and the tool
length is 0.
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The global maximum interval sensitivity S∗
εim of the angle error [eεm] to the spatial

error component [∆ri] is defined as

S∗
εim= max(Sεim). (17)

The global maximum interval sensitivity S∗
j of the jth geometric error to spatial error

is defined as follows:
S∗

j =
√

∑3
i=1S∗

ij
2 (j = 1, 2, · · · , 21). (18)

The global maximum interval sensitivity S∗
j , as defined above, can be directly utilized

as the sensitivity design index for machine tool accuracy. Utilizing this sensitivity design
index, the tolerance domain for each error, derived from its distribution, can satisfy the
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design index requirements for all geometric errors across the entire workspace of the
machine tool.

According to the structural parameters of the machine tool, the spatial error model
is simplified, and the interval sensitivity analysis is conducted in the machining space
V = X × Y × Z, which is composed of the X, Y, and Z axes.

The interval sensitivity of the six geometric errors of the X-axis to the spatial error can
be calculated using Equations (16)–(18). Figure 5 illustrates the graphical representation of
the interval sensitivity.
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Figure 5. Graphical representation of interval sensitivity.

From Figure 5, it is evident that the six geometric errors of the X-axis all influence the
spatial errors; however, their effects do not exhibit a consistent pattern. The global maxi-
mum interval sensitivity of each geometric error source to spatial error can be calculated
using Equation (18), as shown in Figure 6.
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Figure 6. Global maximum interval sensitivity to spatial error of geometric error sources.

Figure 6 illustrates the results of the global maximum interval sensitivity analysis
for each geometric error to spatial error. The blue, orange, and green sections represent
the global maximum interval sensitivities of the six geometric errors of the X-, Y-, and
Z-axis, respectively. Additionally, the black section denotes the maximum sensitivity of
the perpendicularity errors of the three translational axes to spatial errors across the entire
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workspace. Except for εz(y) during the movement of the spindle box, which does not affect
the spatial error, all other geometric errors have varying degrees of impact on the maximum
sensitivity of the spatial error region.

In the following process of allocating tolerances, it is essential to strictly control the
tolerance range of geometric errors that exhibit high sensitivity to the maximum range
of spatial errors. Conversely, for geometric errors that demonstrate low sensitivity to the
maximum range of spatial errors, the tolerance range can be relaxed appropriately.

4. Optimized Allocation of Geometric Accuracy
4.1. Interval Optimization Model

Based on the spatial error model established in the previous section, twenty-one
geometric errors are utilized as design variables. These design variables are defined as x1

through x21, corresponding to the X-axis, Y-axis, Z-axis, and perpendicularity.
By internalizing the above 21 design variables, it can be obtained that

[X] = {[x1], [x2], · · · , [x21]}, (19)

where [xi] = [0, xi] (i = 1, 2, · · · , 21). For example, the interval representation of δx(y) =
6 µm/m is δx(y) ∈ [0, 6], which means that when the spindle box moves throughout its full
stroke, the range of straightness error in the X-direction is 0~6 µm/m, with a maximum
value of 6 µm/m.

According to research on the optimal allocation of geometric accuracy, the current
mainstream methods include the mean squared error allocation method and the tolerance–
cost model allocation method. When the mean squared error distribution method is
employed to optimize geometric accuracy distribution, some error terms may be excessively
lenient while others may be overly stringent. Conversely, when utilizing the tolerance–
cost model allocation method to enhance geometric accuracy, it is essential to select the
appropriate tolerance–cost functions based on various machining features. These tolerance–
cost functions are derived from engineering experience or extensive experimentation under
specific conditions, which limits their versatility and accuracy.

In order to address the limitations of the two methods mentioned above, this paper
utilizes the global maximum interval sensitivity of each geometric error as a weighting
factor. The design objective is to maximize the sum of the products of the interval width
of each geometric error source and its corresponding global maximum interval sensitivity.
The objective function is defined as follows:

max f ([X]) = ∑21
i=1S∗

i d([xi]), (i = 1, 2, · · · , 21) (20)

where [X] = {[x1], [x2], · · · , [x21]} is the interval vector of the design variables, S∗
i is the

global maximum interval sensitivity of geometric errors to the spatial error, and d([xi]) is
the interval width of the geometric error.

In the traditional forward design process of geometric accuracy of CNC machine tools,
the allowable variation range of positioning errors of the three translational axes is usually
used as the constraint condition of tolerance allocation. This method ignores the correlation
between the errors of each axis, resulting in tolerance allocation results that cannot meet
the requirements of machine tool accuracy design. Therefore, the allowable variation range
of the position error of the tool tip relative to the workpiece is regarded as a sphere in this
paper. As long as the error falls within the sphere, it is considered that the accuracy of the
machine tool meets the design requirements. According to the actual working conditions,
the spatial error constraint for the entire machine is established: the deviation of the overall
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spatial geometric error in the body diagonal positioning system, within 60% of the working
space, must not exceed 25 µm.

Figure 7a illustrates the diagonal space error diagram of the entire system. Within the
workspace, there are four diagonal lines, ppp, npp, pnp, and ppn, where p represents the
forward direction and n represents the reverse direction, as depicted in Figure 7a. Taking
the body diagonal ppp as an example, the machine tool is configured to measure the spatial
error along this diagonal. Due to the presence of spatial error, the ideal measurement point
does not align with the actual measurement point, as shown in Figure 7b. Geometrically,
the spatial error constraint of the machine tool can be defined as a spherical envelope
surface with an ideal measurement point as the center and a radius R of 12.5 µm. When the
modulus of the spatial error vector ∆r is less than or equal to R, the actual measurement
point is qualified, such as the point pa1; when the modulus of the spatial error vector ∆r is
greater than R, it shows that the actual measurement point is out of tolerance, such as the
point p′a1. Therefore, the constraint condition of the spatial error can be defined as

∆r =
√

∆x2 + ∆y2 + ∆z2 ≤ R = 12.5, (21)

where ∆r is the modulus of the spatial error vector ∆r and ∆x, ∆y, and ∆z are the error
components in the X, Y, and Z directions, respectively.
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Figure 7. Volumetric error along the body diagonals of the whole workspace. (a) Measuring space
and four body diagonals; (b) local amplification diagram of the measuring point.

The geometric accuracy of the machine tool is primarily determined by the precision
of its components and the accuracy of its assembly. During actual manufacturing and
installation, cumulative errors from screw pitch and unavoidable manufacturing and
installation errors of the guide rail prevent each geometric error source interval from
reaching an ideal state, meaning that xi > 0. Consequently, it is crucial to carefully select
the constraint range for the upper bound of each geometric error source interval to optimize
the results of geometric accuracy allocation.

According to error traceability technology, we can establish the relationship between
geometric error sources and the accuracy parameters of the associated components. The
relevant expressions are presented in Tables 2–4.
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Table 2. Corresponding relationships between the position error sources and the accuracy parameters.

Positioning Error Horizontal Straightness Error Vertical Straightness Error

x1 = δx(x) = S(x) x3 = δz(x) = ∆s1(x) x2 = δy(x) = ∆s2(x)
x7 = δy(y) = S(y) x8 = δx(y) = ∆s1(y) x9 = δz(y) = ∆s2(y)
x13 = δz(z) = S(z) x14 = δx(z) = ∆s1(z) x15 = δy(z) = ∆s2(z)

Table 3. Corresponding relationships between the angular error sources and the accuracy parameters.

Roll Angular Error Pitch Error Yaw Error

x4 = εx(x) = ∆s3(x) x6 = εz(x) = ∆s2(x)/l(x) x5 = εy(x) = ∆s1(x)/l(x)
x11 = εy(y) = ∆s3(y) x10 = εx(y) = ∆s2(y)/l(y) x12 = εz(y) = ∆s1(y)/l(y)
x18 = εz(z) = ∆s3(z) x16 = εx(z) = ∆s2(z)/l(z) x17 = εy(z) = ∆s1(z)/l(z)

Table 4. Corresponding relationships between perpendicularity errors and accuracy parameters.

Perpendicularity Error Calculation Expression

XY perpendicularity error x19 = εxy = arctg(∆s2(x)/l(x))− arctg(∆s1(y)/l(y))

YZ perpendicularity error x20 = εyz = arctg(∆s2(y)/l(y))− arctg(∆s2(z)/l(z))

ZX perpendicularity error x21 = εzx = arctg(∆s1(z)/l(z))− arctg(∆s1(x)/l(x))

Combining Equations (19)–(21), standard interval optimization models can be estab-
lished. The interval operation rules and interval expansion theorem are used to simplify
the above interval optimization models, and the following specific forms can be obtained.

Solve X = {x1, x2, · · · , x21}, and

min f (X) =
n
∑

i=1
S∗

i (xi)
−2

s.t.
√

∆x2 + ∆y2 + ∆z2 − 12.5 ≤ 0
lb(xi) ≤ xi ≤ ub(xi)

X = {x1, x2, · · · , x21}
i = 1, 2, · · · , n

. (22)

4.2. Solving the Interval Optimization Model Based on the Genetic Algorithm

For the optimization problem described in Equation (22), the objective function is
nonlinear, the constraints include both linear and nonlinear components, and there are
multiple design variables, which contribute to the complexity of the optimization model.
Due to its inherent heuristic random search characteristics, robust parallel computing
capabilities, and independence from auxiliary information, the genetic algorithm (GA) is
well suited for efficiently and accurately solving the aforementioned optimization prob-
lems. Consequently, this article employs the genetic algorithm to address the optimization
problem outlined in Equation (22).

This article is based on the MATLAB R2016b genetic algorithm toolbox to solve interval
optimization models, with specific parameter settings as follows:

(1) Population size N: The rate of convergence of the genetic algorithm depends on
the size of the population. If the scale is too small, it is easy to converge to the local optimal
solution; if the population is too large, the rate of convergence will be reduced. Generally,
10~20 will be selected. In this paper, N = 10 is selected.

(2) Variable dimension n: There are a total of 21 design variables in the interval
optimization model to be solved in this article, so n = 21 is selected.
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(3) Binary encoding length M: This article adopts binary encoding and sets the interval
of the ith design variable as [ai, bi], requiring an accuracy of 10−6. The binary encoding
length of a certain design variable can be obtained through Equation (23):

2mi−1 ≤ (bi − ai)× 106 ≤ 2mi − 1. (23)

The total binary encoding length M is

M =
21

∑
i=1

mi. (24)

(4) Crossover rate pc: Parent individuals generate corresponding offspring individuals
through crossover operations. If the crossover rate is too small, search operations can
easily lead to stagnation; if the crossover rate is too high, the intergenerational crossover is
more sufficient, but it is easy to damage the excellent individuals in the population. The
recommended value range for pc is generally 0.4~0.99, and in this article, pc = 0.8 is selected.

(5) Variation rate pm: Setting the variation rate reasonably can effectively avoid prema-
ture puberty. If the mutation rate is too high, it increases individual diversity, but some
excellent individuals may be destroyed; if the mutation rate is too small, the individual is
relatively stable, but the possibility of premature puberty and falling into local optimization
greatly increases. It is generally recommended that the value range of pm is 0.0001~0.1, and
in this article, pm = 0.08 is selected.

(6) Cutoff condition: Define the maximum genetic algebra G as the cutoff condition,
and this article selects G = 100.

From Equation (18), it can be seen that the three components in the constraint inequality
are not only related to the 21 geometric error sources (design variables), but also to the
machine tool coordinates. Therefore, to find the optimal solution for 21 design variables,
it is necessary to concretize the machine tool coordinates. Ten equidistant feature space
points are taken on a diagonal line of the working space of the machining tool, and the
specific coordinate values are shown in Table 5. In the table, groups 1 to 10 indicate that the
machine tool workbench tends toward the leftmost end, the spindle box tends toward the
uppermost end, and the column tends toward the rearmost end.

Table 5. Coordinate of the characteristic points of the workspace body diagonal.

Group 1 2 3 4 5 6 7 8 9 10

X/mm −1400 −1260 −1120 −980 −840 −700 −560 −420 −280 −140
Y/mm −1000 −900 −800 −700 −600 −500 −400 −300 −200 −100
Z/mm −900 −820 −740 −660 −580 −500 −420 −340 −260 −180

Run the genetic algorithm toolbox, set the above determined genetic algorithm param-
eters, and obtain 10 sets of optimal solutions, as shown in Figure 8.
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It can be seen that the optimized allocation values of the 21 geometric error sources are
related to the machine tool coordinates. Specifically, as the machine tool workbench tends
toward the leftmost end, the spindle box tends toward the uppermost end, and the column
tends toward the rearmost end. Furthermore, the optimized values of each geometric error
source become smaller and smaller; that is, the accuracy requirements of each geometric
error source become increasingly strict. The change in the optimized value of the angle
error source is more significant than that of the position error source. This is due to the
existence of Abbe error. As the motion distance of each axis of the machine tool increases,
the position error component caused by Abbe error in the workspace increases, leading to
increasingly strict accuracy requirements for various geometric error sources. Taking the
minimum of 10 sets of optimization values as the final optimization allocation value for
each geometric error source can ensure that the solved geometric error optimization values
meet the accuracy allocation requirements throughout the entire workspace. The accuracy
allocation results for 21 geometric error sources are shown in Tables 6–9.

Table 6. The accuracy distribution results for six geometric errors of the X-axis.

Variables x1
µm

x2
µm

x3
µm

x4
µm/m

x5
µm/m

x6
µm/m

Error source δx(x) δy(x) δz(x) εx(x) εy(x) εz(x)
Optimal values 6 10 10 4 5.979 5.061

Table 7. The accuracy distribution results for six geometric errors of the Y-axis.

Variables x7
µm

x8
µm

x9
µm

x10
µm/m

x11
µm/m

x12
µm/m

Error source δx(y) δy(y) δz(y) εx(y) εy(y) εz(y)
Optimal values 10 6 6.984 3 3 3.113

Table 8. The accuracy distribution results for six geometric errors of the Z-axis.

Variables x13
µm

x14
µm

x15
µm

x16
µm/m

x17
µm/m

x18
µm/m

Error source δx(z) δy(z) δz(z) εx(z) εy(z) εz(z)
Optimal values 10 3 7.027 4 4 3.334
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Table 9. The accuracy distribution results for verticality errors of the vertical axis.

Variables x19
µm/m

x20
µm/m

x21
µm/m

Error source εxy εyz εzx
Optimal values 3.312 2.651 4.35

4.3. Comparison of Geometric Accuracy Optimization Allocation Results with Theoretical Values

The above geometric accuracy optimization allocation results based on the genetic
algorithm solution did not consider the error homogenization effect. In order to compare
and analyze the obtained geometric accuracy optimization allocation results with the
theoretical values considering the error homogenization effect, taking the X-axis assembly
process as an example, the guide rail error homogenization coefficient is obtained without
considering the error homogenization effect, and then the quantitative relationship between
the optimized geometric accuracy allocation value and the theoretical value is studied.

Figure 9 shows the measurement process of the vertical straightness error and pitch
angle error of the X-axis guide rail. The measuring instrument is an ultra-precision auto-
collimator with a resolution of 0.1 µm/mm. During the error measurement process, the
autocollimator reflector is fixed on the slider, and the total measurement distance is divided
into 12 planes based on the length of the slider. Each time the slider moves one plane in
front of another, a total of 13 data points are measured. The measurement results of the
vertical straightness error and pitch angle error of the guide rail are shown in Figures 10
and 11, respectively.
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Figure 11. Measurement results for pitch error of X-axis.

From Figures 10 and 11, it can be seen that the measured vertical straightness error of
the X-axis guide rail is 6.8 µm. The pitch angle error is 27 µm/mm.

Figure 12 shows the measurement process of the comprehensive vertical straightness
error and pitch angle error of the X-axis workbench of the machining center. The measuring
instruments also use ultra-precision autocollimators. In the process of error measurement,
the autocollimator reflector is fixed at the Centroid of the upper end face of the workbench.
According to the length of the workbench, the total measurement travel is divided into 8
intervals. Each time, the corresponding slider moves 1 level head to tail, and a total of 9
data points are measured. The measurement results of the vertical straightness error and
pitch angle error of the guide rail are shown in Figures 13 and 14, respectively.
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From Figures 13 and 14, it can be seen that the measured comprehensive vertical
straightness error of the X-axis workbench is 2.37 µm. The comprehensive pitch angle error
is 8.95 µm/mm.

According to the definition of error averaging coefficient ne = Ew/eg (Ew is the motion
error of the moving component, eg is the geometric error of the guide rail), the average
coefficient of the X-axis vertical straightness error is 0.35, and the average coefficient of the
pitch angle error is 0.33. For the convenience of research, this article uniformly takes an
error averaging coefficient of about 1/3. The theoretical values without considering the
error homogenization effect can be obtained by using this error homogenization coefficient.
Tables 10–13 show the comparison between the geometric accuracy optimization allocation
values solved in this paper and the theoretical values.

Table 10. Comparison of accuracy distribution results with theoretical value for six geometric errors
of the X-axis.

Error Source δx(x)
µm

δy(x)
µm

δz(x)
µm

εx(x)
µm/m

εy(x)
µm/m

εz(x)
µm/m

Actual allocated value 6 10 10 4 5.979 5.061
Theoretical design value 2 1.667 1.667 2.667 2.667 2.667

Difference 4 8.333 8.333 1.333 3.312 2.394

Table 11. Comparison of accuracy distribution results with theoretical value for six geometric errors
of the Y axis.

Error Source δx(y)
µm

δy(y)
µm

δz(y)
µm

εx(y)
µm/m

εy(y)
µm/m

εz(y)
µm/m

Actual allocated value 10 6 6.984 3 3 3.113
Theoretical design value 1.667 2 1.667 2.667 2.667 2.667

Difference 8.333 4 5.317 0.333 0.333 0.446

Table 12. Comparison of accuracy distribution results with theoretical value for six geometric errors
of the Z axis.

Error Source δx(z)
µm

δy(z)
µm

δz(z)
µm

εx(z)
µm/m

εy(z)
µm/m

εz(z)
µm/m

Actual allocated value 10 3 7.027 4 4 3.334
Theoretical design value 1.667 1.667 2 2.667 2.667 2.667

Difference 8.333 1.333 5.027 1.333 1.333 0.667
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Table 13. Comparison of accuracy distribution results with theoretical value for verticality errors of
the vertical axis.

Error Source εxy
µm/m

εyz
µm/m

εzx
µm/m

Actual allocated value 3.312 2.651 4.35
Theoretical design value 3.333 3.333 3.333

Difference −0.021 −0.682 1.017

According to the comparison between the geometric accuracy allocation values and
the theoretical values in Tables 10–13, it can be seen that the allocation values of geometric
accuracy, except for perpendicularity error εxy and εyz, have become tighter by 0.021 µm/m
and 0.682 µm/m. The allocation values of the other 19 geometric accuracy items have
achieved varying degrees of relaxation.

Based on the geometric accuracy allocation results obtained above, 1000 spatial points
are randomly selected in the workspace for simulation verification. When each geometric
error is the fixed value xi, 1000 estimated values of spatial errors are obtained by substituting
them into the spatial error model. The distribution is shown in Figure 15, with 989 qualified
points and 11 exceedances. The frequency distribution histogram is shown in Figure 16,
and the estimated spatial error values are mainly distributed between 6.5 and 11 µm. The
design accuracy satisfaction rate reaches 98.9%.
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Through the simulation of spatial error prediction in the above two cases, the rational-
ity of the accuracy distribution results of each geometric error source of the machine tool
and the correctness of the accuracy optimization distribution method studied in this paper
are verified. Figure 17 shows the design range of each geometric error source. The red
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value represents the accuracy range of the position error source, the black value represents
the accuracy range of the angle error source, and the red envelope line represents the upper
limit of the accuracy range value. Based on the above research, it can be concluded that
in the actual process of machine tool design and manufacturing, if the design indicators
given by each geometric error source are within the red envelope, it can be considered
that the design indicators given by each geometric error source meet the accuracy design
requirements of the entire machine with an accuracy satisfaction rate of 87.4%.
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5. Conclusions
This study systematically investigates a method for optimizing geometric accuracy

allocation in precision horizontal machining centers utilizing interval theory. A comprehen-
sive spatial error model for machine tools is developed based on multi-body system theory.
By employing homogeneous coordinate transformations, the study derives the ideal static
matrix, ideal motion matrix, static error matrix, and motion error matrix under both ideal
and actual motion conditions. The overall spatial error model is subsequently obtained
through the multiplication of these kinematic matrices.

The research further explores interval sensitivity analysis techniques grounded in
interval theory, defining interval expansion factors. It incorporates considerations of
Abbe error, defining the interval sensitivity of positional error sources, angular error
sources, and the maximum interval sensitivity across the entire workspace. The interval
optimization model utilizes the interval widths of 21 geometric errors as design variables,
while imposing a constraint that the deviation of the diagonal position must not exceed
25 µm. Additionally, the maximum sensitivity across the entire workspace of these 21
geometric errors is considered to be the weighting factor. The primary objective of the
design is to maximize the interval widths of the 21 geometric errors. This study employs
a genetic algorithm to address the interval optimization model. Following the precision
allocation outcomes, a simulation verification is performed for each source of geometric
error, utilizing both fixed and interval values. The compliance rates for spatial accuracy are
determined to be 98.9% and 87.4%, respectively. These findings substantiate the validity of
the tolerance allocation results. Compared with the existing machine tool accuracy design
methods, the tolerance allocation strategy proposed in this paper not only considers the
coupling design between the errors in all directions, but also reduces the manufacturing
cost under the premise of ensuring the spatial accuracy of the whole machine.

The forward design method of geometric accuracy of CNC machine tools proposed in
this paper is obtained under the assumption that the error sources are independent of each
other. In the follow-up study, the correlation between errors and the influence of thermal
errors will be further considered.
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