Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (1,180)

Search Parameters:
Authors = Qi Lin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1674 KiB  
Review
Mechanism of RCD and the Role of Different Death Signaling Pathways in Cancer
by Jianming Zhou, Ruotong Huang, Maidinai Aimaiti, Qingyu Zhou, Xiang Wu, Jiajun Zhu, Xiangyi Ma, Ke Qian, Qi Zhou, Lianlong Hu, Xiaoyi Yang, Yiting Tang, Yong Lin and Shuying Chen
Biomedicines 2025, 13(8), 1880; https://doi.org/10.3390/biomedicines13081880 - 2 Aug 2025
Viewed by 301
Abstract
Cancer remains a significant global health challenge, with China being particularly affected because of its large population. Regulated cell death (RCD) mechanisms, including autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis, play complex roles in cancer development and progression. This review explores the dual roles [...] Read more.
Cancer remains a significant global health challenge, with China being particularly affected because of its large population. Regulated cell death (RCD) mechanisms, including autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis, play complex roles in cancer development and progression. This review explores the dual roles of autophagy and apoptosis in cancer, highlighting their tumor-suppressive and tumor-promoting functions. Autophagy can maintain genomic stability, induce apoptosis, and suppress protumor inflammation, but it may also support tumor cell survival and drug resistance. Apoptosis, while primarily tumor-suppressive, can paradoxically promote cancer progression in certain contexts. Other RCD mechanisms, such as necroptosis, pyroptosis, and ferroptosis, also exhibit dual roles in cancer, influencing tumor growth, metastasis, and immune responses. Understanding these mechanisms is crucial for developing targeted cancer therapies. This review provides insights into the intricate interplay between RCD mechanisms and cancer, emphasizing the need for context-dependent therapeutic strategies. Full article
(This article belongs to the Special Issue Autophagy, Apoptosis and Cancer: 2025 Update)
Show Figures

Figure 1

17 pages, 13918 KiB  
Article
Occurrence State and Controlling Factors of Methane in Deep Marine Shale: A Case Study from Silurian Longmaxi Formation in Sichuan Basin, SW China
by Junwei Pu, Tongtong Luo, Yalan Li, Hongwei Jiang and Lin Qi
Minerals 2025, 15(8), 820; https://doi.org/10.3390/min15080820 - 1 Aug 2025
Viewed by 140
Abstract
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas [...] Read more.
Deep marine shale is the primary carrier of shale gas resources in Southwestern China. Because the occurrence and gas content of methane vary with burial conditions, understanding the microscopic mechanism of methane occurrence in deep marine shale is critical for effective shale gas exploitation. The temperature and pressure conditions in deep shale exceed the operating limits of experimental equipment; thus, few studies have discussed the microscopic occurrence mechanism of shale gas in deep marine shale. This study applies molecular simulation technology to reveal the methane’s microscopic occurrence mechanism, particularly the main controlling factor of adsorbed methane in deep marine shale. Two types of simulation models are also proposed. The Grand Canonical Monte Carlo (GCMC) method is used to simulate the adsorption behavior of methane molecules in these two models. The results indicate that the isosteric adsorption heat of methane in both models is below 42 kJ/mol, suggesting that methane adsorption in deep shale is physical adsorption. Adsorbed methane concentrates on the pore wall surface and forms a double-layer adsorption. Furthermore, adsorbed methane can transition to single-layer adsorption if the pore size is less than 1.6 nm. The total adsorption capacity increases with rising pressure, although the growth rate decreases. Excess adsorption capacity is highly sensitive to pressure and can become negative at high pressures. Methane adsorption capacity is determined by pore size and adsorption potential, while accommodation space and adsorption potential are influenced by pore size and mineral type. Under deep marine shale reservoir burial conditions, with burial depth deepening, the effect of temperature on shale gas occurrence is weaker than pressure. Higher temperatures inhibit shale gas occurrence, and high pressure enhances shale gas preservation. Smaller pores facilitate the occurrence of adsorbed methane, and larger pores have larger total methane adsorption capacity. Deep marine shale with high formation pressure and high clay mineral content is conducive to the microscopic accumulation of shale gas in deep marine shale reservoirs. This study discusses the microscopic occurrence state of deep marine shale gas and provides a reference for the exploration and development of deep shale gas. Full article
(This article belongs to the Special Issue Element Enrichment and Gas Accumulation in Black Rock Series)
Show Figures

Figure 1

21 pages, 2807 KiB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 318
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

23 pages, 8942 KiB  
Article
Optical and SAR Image Registration in Equatorial Cloudy Regions Guided by Automatically Point-Prompted Cloud Masks
by Yifan Liao, Shuo Li, Mingyang Gao, Shizhong Li, Wei Qin, Qiang Xiong, Cong Lin, Qi Chen and Pengjie Tao
Remote Sens. 2025, 17(15), 2630; https://doi.org/10.3390/rs17152630 - 29 Jul 2025
Viewed by 276
Abstract
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the [...] Read more.
The equator’s unique combination of high humidity and temperature renders optical satellite imagery highly susceptible to persistent cloud cover. In contrast, synthetic aperture radar (SAR) offers a robust alternative due to its ability to penetrate clouds with microwave imaging. This study addresses the challenges of cloud-induced data gaps and cross-sensor geometric biases by proposing an advanced optical and SAR image-matching framework specifically designed for cloud-prone equatorial regions. We use a prompt-driven visual segmentation model with automatic prompt point generation to produce cloud masks that guide cross-modal feature-matching and joint adjustment of optical and SAR data. This process results in a comprehensive digital orthophoto map (DOM) with high geometric consistency, retaining the fine spatial detail of optical data and the all-weather reliability of SAR. We validate our approach across four equatorial regions using five satellite platforms with varying spatial resolutions and revisit intervals. Even in areas with more than 50 percent cloud cover, our method maintains sub-pixel edging accuracy under manual check points and delivers comprehensive DOM products, establishing a reliable foundation for downstream environmental monitoring and ecosystem analysis. Full article
Show Figures

Figure 1

12 pages, 3161 KiB  
Article
Evaluation of Poxvirus-Specific Antibody Response in Monkey Poxvirus-Negative and -Positive Cohorts
by Nannan Jia, Lin Ai, Yunping Ma, Chen Hua, Qi Shen, Chen Wang, Teng Li, Yingdan Wang, Yunyi Li, Yin Yang, Chi Zhou, Min Chen, Huanyu Wu, Xin Chen, Lu Lu, Yanqiu Zhou, Jinghe Huang and Fan Wu
Vaccines 2025, 13(8), 795; https://doi.org/10.3390/vaccines13080795 - 27 Jul 2025
Viewed by 344
Abstract
Objectives: Understanding the antibody response in monkeypox virus (MPXV)-infected and uninfected individuals is essential for developing next-generation MPXV vaccines. This study aimed to characterize neutralizing antibody (NAb) and antibody-dependent cellular cytotoxicity (ADCC) responses in both groups, providing insights into immune protection and vaccine [...] Read more.
Objectives: Understanding the antibody response in monkeypox virus (MPXV)-infected and uninfected individuals is essential for developing next-generation MPXV vaccines. This study aimed to characterize neutralizing antibody (NAb) and antibody-dependent cellular cytotoxicity (ADCC) responses in both groups, providing insights into immune protection and vaccine design. Methods: A recombinant vaccinia Tian Tan (VTT) virus was utilized to develop high-throughput luciferase-reporter-based neutralization and ADCC assays. These assays were applied to evaluate the presence and levels of poxvirus-specific antibodies in MPXV-infected and uninfected individuals, including those vaccinated with vaccinia-based vaccines. Results: Poxvirus-specific NAbs were detected in MPXV-negative individuals with prior vaccinia vaccination. However, MSM individuals exhibited significantly lower pre-existing NAb levels than non-MSM individuals, potentially contributing to their higher susceptibility to MPXV infection. In individuals with mild MPXV infection, robust NAb and ADCC responses were observed, regardless of vaccination status. Additionally, HIV-positive individuals demonstrated comparable antibody responses following MPXV infection. Conclusions: These findings highlight the potential role of pre-existing NAbs in MPXV susceptibility and the strong immune response elicited by mild MPXV infection. Further research is needed to determine whether MPXV-specific antibodies mitigate disease progression, which could inform the development of effective MPXV vaccines. Full article
(This article belongs to the Section Human Papillomavirus Vaccines)
Show Figures

Figure 1

15 pages, 5275 KiB  
Article
Effect of Copper in Gas-Shielded Solid Wire on Microstructural Evolution and Cryogenic Toughness of X80 Pipeline Steel Welds
by Leng Peng, Rui Hong, Qi-Lin Ma, Neng-Sheng Liu, Shu-Biao Yin and Shu-Jun Jia
Materials 2025, 18(15), 3519; https://doi.org/10.3390/ma18153519 - 27 Jul 2025
Viewed by 310
Abstract
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding [...] Read more.
This study systematically evaluates the influence of copper (Cu) addition in gas-shielded solid wires on the microstructure and cryogenic toughness of X80 pipeline steel welds. Welds were fabricated using solid wires with varying Cu contents (0.13–0.34 wt.%) under identical gas metal arc welding (GMAW) parameters. The mechanical capacities were assessed via tensile testing, Charpy V-notch impact tests at −20 °C and Vickers hardness measurements. Microstructural evolution was characterized through optical microscopy (OM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Key findings reveal that increasing the Cu content from 0.13 wt.% to 0.34 wt.% reduces the volume percentage of acicular ferrite (AF) in the weld metal by approximately 20%, accompanied by a significant decline in cryogenic toughness, with the average impact energy decreasing from 221.08 J to 151.59 J. Mechanistic analysis demonstrates that the trace increase in the Cu element. The phase transition temperature and inclusions is not significant but can refine the prior austenite grain size of the weld, so that the total surface area of the grain boundary increases, and the surface area of the inclusions within the grain is relatively small, resulting in the nucleation of acicular ferrite within the grain being weak. This microstructural transition lowers the critical crack size and diminishes the density for high-angle grain boundaries (HAGBs > 45°), which weakens crack deflection capability. Consequently, the crack propagation angle decreases from 54.73° to 45°, substantially reducing the energy required for stable crack growth and deteriorating low-temperature toughness. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 2659 KiB  
Article
Salt Stress Responses of Different Rice Varieties at Panicle Initiation: Agronomic Traits, Photosynthesis, and Antioxidants
by Yusheng Li, Yuxiang Xue, Zhuangzhuang Guan, Zhenhang Wang, Daijie Hou, Tingcheng Zhao, Xutong Lu, Yucheng Qi, Yanbo Hao, Jinqi Liu, Lin Li, Haider Sultan, Xiayu Guo, Zhiyong Ai and Aibin He
Plants 2025, 14(15), 2278; https://doi.org/10.3390/plants14152278 - 24 Jul 2025
Viewed by 331
Abstract
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). [...] Read more.
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). Leveraging precision salinity-control facilities, this study imposed four salt stress gradients (0, 3, 5, and 7‰) to dissect the differential response mechanisms of six rice varieties (YXYZ: Yuxiangyouzhan, JLY3261: Jingliangyou3261, SLY91: Shuangliangyou91, SLY138: Shuangliangyou138, HLYYHSM: Hualiangyouyuehesimiao, and SLY11:Shuangliangyou111) during PI. The results revealed that increasing salinity significantly reduced tiller number (13.14–68.04%), leaf area index (18.58–57.99%), canopy light interception rate (11.91–44.08%), and net photosynthetic rate (2.63–52.42%) (p < 0.001), accompanied by reactive oxygen species (ROS)-induced membrane lipid peroxidation. Integrative analysis of field phenotypic and physiological indices revealed distinct adaptation strategies: JLY3261 rapidly activated antioxidant enzymes under 3‰ salinity, alleviating lipid peroxidation (no significant difference in H2O2 or malondialdehyde content compared to 0‰ salinity) and maintaining tillering and aboveground biomass. SLY91 tolerated 7‰ salinity via CAT/POD-mediated lipid peroxide degradation, with H2O2 and malondialdehyde contents increasing initially but decreasing with escalating stress. These findings highlight genotype-specific antioxidant strategies underlying salt-tolerance mechanisms and the critical need for integrating phenomics–physiological assessments at reproductive stages into salt-tolerance breeding pipelines. Full article
Show Figures

Figure 1

15 pages, 2852 KiB  
Article
Fuel Grain Configuration Adaptation for High-Regression-Rate Hybrid Propulsion Applications
by Lin-Lin Liu, Bo-Biao Li, Ze-Xin Chen and Song-Qi Hu
Aerospace 2025, 12(8), 652; https://doi.org/10.3390/aerospace12080652 - 23 Jul 2025
Viewed by 174
Abstract
Low regression rate is the most critical issue for the development and application of hybrid rocket motors (HRMs). Paraffin-based fuels are potential candidates for HRMs due to their high regression rates but adding polymers to improve strength results in insufficient regression rates for [...] Read more.
Low regression rate is the most critical issue for the development and application of hybrid rocket motors (HRMs). Paraffin-based fuels are potential candidates for HRMs due to their high regression rates but adding polymers to improve strength results in insufficient regression rates for HRMs applications. In this work, Computational Fluid Dynamics (CFD) modeling and analysis were used to investigate the mixing and combustion of gaseous fuels and oxidizers in HRMs for various fuel grains and injector combinations. In addition, the regression rate characteristics and combustion efficiency were evaluated using a ground test. The results showed that the swirling flow with both high mixing intensity and high velocity could be formed by using the swirl injector. The highest mixing degree attained for the star-swirl grain and swirl injector was 86%. The reported combustion efficiency calculated by the CFD model attained a maximum of 93% at the nozzle throat. In addition, a spatially averaged regression rate of 1.40 mm·s−1 was achieved for the star-swirl grain and swirl injector combination when the mass flux of N2O was 89.94 kg·m−2·s−1. This is around 191% higher than the case of non-swirling flow. However, there were obvious local regression rate differences between the root of the star and the slot. The regression rate increase was accompanied by a decrease in the combustion efficiency for the strong swirling flow condition due to the remarkable higher mass flow rate of gasified fuels. It was shown that the nano-sized aluminum was unfavorable for the combustion efficiency, especially under extreme fuel-rich conditions. Full article
Show Figures

Figure 1

19 pages, 1387 KiB  
Review
Enhancing Agricultural Sustainability by Improving the Efficiency of Lignocellulosic Biomass Utilization in the Ruminant Diet via Solid-State Fermentation with White-Rot Fungi: A Review
by Qi Yan, Osmond Datsomor, Wenhao Zhao, Wenjie Chen, Caixiang Wei, Deshuang Wei, Xin Gao, Chenghuan Qin, Qichao Gu, Caixia Zou and Bo Lin
Microorganisms 2025, 13(7), 1708; https://doi.org/10.3390/microorganisms13071708 - 21 Jul 2025
Viewed by 404
Abstract
Against the backdrop of the green circular economy, the exploration of reliable and sustainable applications of lignocellulosic biomass (LCBM) has emerged as a critical research frontier. The utilization of LCBM as a ruminant roughage source offers a promising strategy to address two pressing [...] Read more.
Against the backdrop of the green circular economy, the exploration of reliable and sustainable applications of lignocellulosic biomass (LCBM) has emerged as a critical research frontier. The utilization of LCBM as a ruminant roughage source offers a promising strategy to address two pressing issues: the “human-animal competition for food” dilemma and the environmental degradation resulting from improper LCBM disposal. However, the high degree of lignification in LCBM significantly restricts its utilization efficiency in ruminant diets. In recent years, microbial pretreatment has gained considerable attention as a viable approach to reduce lignification prior to LCBM application as ruminant feed. White-rot fungi (WRF) have emerged as particularly noteworthy among various microbial agents due to their environmentally benign characteristics and unique lignin degradation selectivity. WRF demonstrates remarkable efficacy in enzymatically breaking down the rigid lignocellulosic matrix (comprising lignin, cellulose, and hemicellulose) within LCBM cell walls, thereby reducing lignin content—a largely indigestible component for ruminants—while simultaneously enhancing the nutritional profile through increased protein availability and improved digestibility. Solid-state fermentation mediated by WRF enhances LCBM utilization rates and optimizes its nutritional value for ruminant consumption, thereby contributing to the advancement of sustainable livestock production, agroforestry systems, and global environmental conservation efforts. This review systematically examines recent technological advancements in WRF-mediated solid-state fermentation of LCBM, evaluates its outcomes of nutritional enhancement and animal utilization efficiency, and critically assesses current limitations and future prospects of this innovative approach within the framework of circular bioeconomy principles. Full article
Show Figures

Figure 1

21 pages, 4944 KiB  
Article
Multi-Objective Optimization Methods for University Campus Planning and Design—A Case Study of Dalian University of Technology
by Lin Qi, Chaoran Chen and Jun Dong
Buildings 2025, 15(14), 2551; https://doi.org/10.3390/buildings15142551 - 19 Jul 2025
Viewed by 360
Abstract
This study focuses on the multi-objective coordination problem in university campus planning and design, proposing an optimized methodology integrating an improved multi-objective decision-making framework. A five-dimensional objective system—comprising energy efficiency, spatial quality, economic cost, ecological benefits, and cultural expression—was established, alongside the identification [...] Read more.
This study focuses on the multi-objective coordination problem in university campus planning and design, proposing an optimized methodology integrating an improved multi-objective decision-making framework. A five-dimensional objective system—comprising energy efficiency, spatial quality, economic cost, ecological benefits, and cultural expression—was established, alongside the identification and standardization of 29 key variables to construct mapping relationships among objective functions. On the algorithmic level, an adapted NSGA-III was implemented on the MATLAB platform (version R2022b), introducing a dynamic reference point mechanism and hybrid constraint-handling strategy to enhance convergence and solution diversity. Taking the northern residential area of the western campus of Dalian University of Technology as a case study, multiple Pareto-optimal solutions were generated. Five representative alternatives were selected and evaluated through the AHP–TOPSIS method to determine the optimal scheme. The results indicated significant improvements in energy, economic, spatial, and ecological dimensions, while also achieving quantifiable control over cultural expression. On this basis, an integrated optimization strategy targeting “form–function–environment–culture” was proposed, offering data-informed support and procedural reference for systematic campus planning. This study demonstrates the effectiveness, adaptability, and practical value of the proposed approach in addressing multi-objective conflicts in university planning. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 9811 KiB  
Article
Is the Cultivation of Dictyophora indusiata with Grass-Based Substrates an Efficacious and Sustainable Approach for Enhancing the Understory Soil Environment?
by Jing Li, Fengju Jiang, Xiaoyue Di, Qi Lai, Dongwei Feng, Yi Zeng, Yufang Lei, Yijia Yin, Biaosheng Lin, Xiuling He, Penghu Liu, Zhanxi Lin, Xiongjie Lin and Dongmei Lin
Agriculture 2025, 15(14), 1533; https://doi.org/10.3390/agriculture15141533 - 16 Jul 2025
Viewed by 350
Abstract
The integration of forestry and agriculture has promoted edible fungi cultivation in forest understory spaces. However, the impact of spent mushroom substrates on forest soils remains unclear. This study explored the use of seafood mushroom spent substrates (SMS) and grass substrates to cultivate [...] Read more.
The integration of forestry and agriculture has promoted edible fungi cultivation in forest understory spaces. However, the impact of spent mushroom substrates on forest soils remains unclear. This study explored the use of seafood mushroom spent substrates (SMS) and grass substrates to cultivate Dictyophora indusiata. After cultivation, soil pH stabilized, organic carbon increased by 34.02–62.24%, total nitrogen rose 1.1–1.9-fold, while soil catalase activity increased by 43.78–100.41% and laccase activity surged 3.3–11.2-fold. The 49% Cenchrus fungigraminus and 49% SMS treatment yielded the highest 4-coumaric acid levels in the soil, while all treatments reduced maslinic and pantothenic acid content. SMS as padding material with C. fungigraminus enhanced soil bacterial diversity in the first and following years. Environmental factors and organic acids influenced the recruitment of genus of Latescibacterota, Acidothermus, Rokubacteriales, Candidatus solibacter, and Bacillus, altering organic acid composition. In conclusion, cultivating D. indusiata understory enhanced environmental characteristics, microbial dynamics, and organic acid profiles in forests’ soil in short time. Full article
(This article belongs to the Special Issue Effects of Different Managements on Soil Quality and Crop Production)
Show Figures

Figure 1

20 pages, 9695 KiB  
Article
Numerical Investigation on Flow and Thermal Characteristics of Spray Evaporation Process in Boiler Desuperheater
by Jianqing Wang, Baoqing Liu, Bin Du, Kaifei Wu, Qi Lin, Bohai Liu and Minghui Cheng
Energies 2025, 18(14), 3734; https://doi.org/10.3390/en18143734 - 15 Jul 2025
Viewed by 202
Abstract
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid [...] Read more.
The spray evaporation process in the boiler desuperheater involves complex droplet behaviors and fluid–thermal coupling, and its temperature distribution characteristics greatly affect the performance and safety of industrial processes. To better understand the process characteristics and develop the optimal desuperheater design, computational fluid dynamics (CFDs) was applied to numerically investigate the flow and thermal characteristics. The Eulerian–Lagrangian approach was used to describe the two-phase flow characteristics. Both primary and secondary droplet breakup, the coupling effect of gas–liquid and stochastic collision and coalescence of droplets were considered in the model. The plain-orifice atomizer model was applied to simulate the atomization process. The numerical model was validated with the plant data. The spray tube structure was found to greatly affect the flow pattern, resulting in the uneven velocity distribution, significant temperature difference, and local reverse flow downstream of the orifices. The velocity and temperature distributions tend to be more uniform due to the complete evaporation and turbulent mixing. Smaller orifices are beneficial for generating smaller-sized droplets, thereby promoting the mass and heat transfer between the steam and droplets. Under the same operating conditions, the desuperheating range of cases with 21, 15, and 9 orifices is 33.7 K, 32.0 K, and 29.8 K, respectively, indicating that the desuperheater with more orifices (i.e., with smaller orifices) shows better desuperheating ability. Additionally, a venturi-type desuperheater was numerically studied and compared with the straight liner case. By contrast, discernible differences in velocity and temperature distribution characteristics can be observed in the venturi case. The desuperheating range of the venturi and straight liner cases is 38.1 K and 35.4 K, respectively. The velocity acceleration through the venturi throat facilitates the droplet breakup and improves mixing, thereby achieving better desuperheating ability and temperature uniformity. Based on the investigation of the spray evaporation process, the complex droplet behaviors and fluid–thermal coupling characteristics in an industrial boiler desuperheater under high temperature and high pressure can be better understood, and effective guidance for the process and design optimizations can be provided. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) for Heat Transfer Modeling)
Show Figures

Figure 1

11 pages, 1525 KiB  
Article
Photodetection Enhancement via Dipole–Dipole Coupling in BA2MAPb2I7/PEA2MA2Pb3I10 Perovskite Heterostructures
by Bin Han, Bingtao Lian, Qi Qiu, Xingyu Liu, Yanren Tang, Mengke Lin, Shukai Ding and Bingshe Xu
Inorganics 2025, 13(7), 240; https://doi.org/10.3390/inorganics13070240 - 11 Jul 2025
Viewed by 373
Abstract
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport [...] Read more.
Two-dimensional (2D) hybrid organic–inorganic perovskites (HOIPs) have attracted considerable attention in optoelectronic applications, owing to their remarkable characteristics. Nevertheless, the application of 2D HOIPs encounters inherent challenges due to the presence of insulating organic spacers, which create barriers for efficient interlayer charge transport (CT). To tackle this issue, we propose a BA2MAPb2I7/PEA2MA2Pb3I10 bilayer heterostructure, where efficient interlayer energy transfer (ET) facilitates compensation for the restricted charge transport across the organic spacer. Our findings reveal that under 532 nm light illumination, the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure photodetector exhibits a significant photocurrent enhancement compared with that of the pure PEA2MA2Pb3I10 device, mainly due to the contribution of the ET process. In contrast, under 600 nm light illumination, where ET is absent, the enhancement is rather limited, emphasizing the critical role of ET in boosting device performance. The overlap of the PL emission peak of BA2MAPb2I7 with the absorption spectra of PEA2MA2Pb3I10, alongside the PL quenching of BA2MAPb2I7 and the enhanced emission of PEA2MA2Pb3I10 provide confirmation of the existence of ET in the BA2MAPb2I7/PEA2MA2Pb3I10 heterostructure. Furthermore, the PL enhancement factor followed a 1/d2 relationship with the thickness of the hBN layer, indicating that ET originates from 2D-to-2D dipole–dipole coupling. This study not only highlights the potential of leveraging ET mechanisms to overcome the limitations of interlayer CT, but also contributes to the fundamental understanding required for engineering advanced 2D HOIP optoelectronic systems. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

16 pages, 3497 KiB  
Article
Utilizing Circadian Heart Rate Variability Features and Machine Learning for Estimating Left Ventricular Ejection Fraction Levels in Hypertensive Patients: A Composite Multiscale Entropy Analysis
by Nanxiang Zhang, Qi Pan, Shuo Yang, Leen Huang, Jianan Yin, Hai Lin, Xiang Huang, Chonglong Ding, Xinyan Zou, Yongjun Zheng and Jinxin Zhang
Biosensors 2025, 15(7), 442; https://doi.org/10.3390/bios15070442 - 10 Jul 2025
Viewed by 399
Abstract
Background: Early identification of left ventricular ejection fraction (LVEF) levels during the progression of hypertension is essential to prevent cardiac deterioration. However, achieving a non-invasive, cost-effective, and definitive assessment is challenging. It has prompted us to develop a comprehensive machine learning framework for [...] Read more.
Background: Early identification of left ventricular ejection fraction (LVEF) levels during the progression of hypertension is essential to prevent cardiac deterioration. However, achieving a non-invasive, cost-effective, and definitive assessment is challenging. It has prompted us to develop a comprehensive machine learning framework for the automatic quantitative estimation of LVEF levels from electrocardiography (ECG) signals. Methods: We enrolled 200 hypertensive patients from Zhongshan City, Guangdong Province, China, from 1 November 2022 to 1 January 2025. Participants underwent 24 h Holter monitoring and echocardiography for LVEF estimation. We developed a comprehensive machine learning framework that initiated with preprocessed ECG signal in one-hour intervals to extract CMSE-based heart rate variability (HRV) features, then utilized machine learning models such as linear regression (LR), Support Vector Machines (SVMs), and random forests (RFs) with recursive feature elimination for optimal LVEF estimation. Results: The LR model, notably during early night interval (20:00–21:00), achieved a RMSE of 4.61% and a MAE of 3.74%, highlighting its superiority. Compared with other similar studies, key CMSE parameters (Scales 1, 5, Slope 1–5, and Area 1–5) can effectively enhance regression models’ estimation performance. Conclusion: Our findings suggest that CMSE-derived circadian HRV features from Holter ECG could serve as a non-invasive, cost-effective, and interpretable solution for LVEF assessment in community settings. From a machine learning interpretable perspective, the proposed method emphasized CMSE’s clinical potential in capturing autonomic dynamics and cardiac function fluctuations. Full article
(This article belongs to the Special Issue Latest Wearable Biosensors—2nd Edition)
Show Figures

Figure 1

25 pages, 4666 KiB  
Article
Taurine Attenuates Disuse Muscle Atrophy Through Modulation of the xCT-GSH-GPX4 and AMPK-ACC-ACSL4 Pathways
by Xi Liu, Yifen Chen, Linglin Zhang, Zhen Qi, Longhe Yang, Caihua Huang, Li Wang and Donghai Lin
Antioxidants 2025, 14(7), 847; https://doi.org/10.3390/antiox14070847 - 10 Jul 2025
Viewed by 534
Abstract
Disused muscle atrophy (DMA) is characterized by skeletal muscle loss and functional decline due to prolonged inactivity. Though evidence remains limited, recent studies suggest that ferroptosis, an iron-dependent, lipid peroxidation-driven form of cell death, may contribute to DMA. Taurine, a natural amino acid [...] Read more.
Disused muscle atrophy (DMA) is characterized by skeletal muscle loss and functional decline due to prolonged inactivity. Though evidence remains limited, recent studies suggest that ferroptosis, an iron-dependent, lipid peroxidation-driven form of cell death, may contribute to DMA. Taurine, a natural amino acid enriched in energy drinks, can improve the proliferation and myogenic differentiation potential of myoblasts. This study aimed to investigate whether taurine supplementation could protect against DMA and explore its potential role in modulating ferroptosis. Using a hindlimb suspension-induced DMA model in male C57BL/6J mice (6–8 weeks old), we assessed muscle mass, function, ferroptosis-related markers, histopathological changes, and metabolic alterations. The results showed that taurine supplementation improved muscle strength and morphology while attenuating markers of ferroptosis, including iron accumulation, lipid peroxidation, and glutathione and related protein (NRF2, GPX4, and xCT) depletion. Metabolomic analysis suggested that taurine modulates disorders in glutathione and lipid metabolism, potentially associated with the regulation of the xCT-GSH-GPX4 and AMPK-ACC-ACSL4 pathways. While these findings support a protective role for taurine and a possible link between ferroptosis and DMA, further functional studies are needed to confirm causality and assess the compound’s translational potential. This study provides initial in vivo evidence implicating ferroptosis in DMA and highlights taurine as a promising candidate for future therapeutic exploration. Full article
Show Figures

Figure 1

Back to TopTop