Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (610)

Search Parameters:
Authors = Jia Xue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5845 KiB  
Article
Ultrastructure and Transcriptomic Analysis Reveal Alternative Pathways of Zona Radiata Formation in Culter alburnus with Different Spawning Habits
by Yan Zhao, Ge Xue, Yanghui Peng, Jia Zhang, Feng Chen, Yeke Wang, Jun He, Jun Chen and Ping Xie
Biology 2025, 14(8), 987; https://doi.org/10.3390/biology14080987 - 3 Aug 2025
Viewed by 198
Abstract
Spawning diversity plays an essential role in fish survival and reproduction, which contributes to the exceptional diversity of teleosts among vertebrates. Different zona radiata structures reflect the adaptability of fish to the environment of spawning and early embryonic development. The morphological and transcriptional [...] Read more.
Spawning diversity plays an essential role in fish survival and reproduction, which contributes to the exceptional diversity of teleosts among vertebrates. Different zona radiata structures reflect the adaptability of fish to the environment of spawning and early embryonic development. The morphological and transcriptional characteristics of fish follicle development between different spawning habits, particularly the zona radiata variations, have been poorly documented. In this study, we integrated histology and transcriptomics to investigate the differences in the zona radiata structure and gene expression profiles among follicles from different spawning habits of Culter alburnus. Our results revealed that stage Ⅲ was the crucial period for zona radiata thickening and structure differentiation. Transcriptomic analyses of adhesive and semi-buoyant eggs at stage Ⅲ revealed a significant upregulation of genes involved in glycoprotein synthesis, extracellular matrix formation, and regulation of protease activity in adhesive eggs, such as the wfdc and a2ml gene family. This upregulation likely underpins the thicker zona radiata in adhesive eggs, facilitating their attachment to substrates. This study represents the first elucidation of the ultrastructure of the zona radiata and gene expression patterns in different developmental stages of adhesive and semi-buoyant eggs of Culter alburnus, offering new perspectives for aquaculture research in understanding fish reproductive adaptations. Full article
Show Figures

Figure 1

14 pages, 2070 KiB  
Article
Carcass and Meat Quality Characteristics and Changes of Lean and Fat Pigs After the Growth Turning Point
by Tianci Liao, Mailin Gan, Yan Zhu, Yuhang Lei, Yiting Yang, Qianli Zheng, Lili Niu, Ye Zhao, Lei Chen, Yuanyuan Wu, Lixin Zhou, Jia Xue, Xiaofeng Zhou, Yan Wang, Linyuan Shen and Li Zhu
Foods 2025, 14(15), 2719; https://doi.org/10.3390/foods14152719 - 3 Aug 2025
Viewed by 322
Abstract
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire [...] Read more.
Pork is a major global source of animal protein, and improving both its production efficiency and meat quality is a central goal in modern animal agriculture and food systems. This study investigated post-inflection-point growth patterns in two genetically distinct pig breeds—the lean-type Yorkshire pig (YP) and the fatty-type Qingyu pig (QYP)—with the aim of elucidating breed-specific characteristics that influence pork quality and yield. Comprehensive evaluations of carcass traits, meat quality attributes, nutritional composition, and gene expression profiles were conducted. After the growth inflection point, carcass traits exhibited greater variability than meat quality traits in both breeds, though with distinct patterns. YPs displayed superior muscle development, with the longissimus muscle area (LMA) increasing rapidly before plateauing at ~130 kg, whereas QYPs maintained more gradual but sustained muscle growth. In contrast, intramuscular fat (IMF)—a key determinant of meat flavor and texture—accumulated faster in YPs post inflection but plateaued earlier in QYPs. Correlation and clustering analyses revealed more synchronized regulation of meat quality traits in QYPs, while YPs showed greater trait variability. Gene expression patterns aligned with these phenotypic trends, highlighting distinct regulatory mechanisms for muscle and fat development in each breed. In addition, based on the growth curves, we calculated the peak age at which the growth rate declined in lean-type and fat-type pigs, which was approximately 200 days for YPs and around 270 days for QYPs. This suggests that these ages may represent the optimal slaughter times for the respective breeds, balancing both economic efficiency and meat quality. These findings provide valuable insights for enhancing pork quality through precision management and offer theoretical guidance for developing breed-specific feeding strategies, slaughter timing, and value-added pork production tailored to consumer preferences in the modern food market. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

2 pages, 122 KiB  
Correction
Correction: Huang et al. The Safety and Immunogenicity of a Quadrivalent Influenza Subunit Vaccine in Healthy Children Aged 6–35 Months: A Randomized, Blinded and Positive-Controlled Phase III Clinical Trial. Vaccines 2025, 13, 467
by Lili Huang, Guangfu Li, Yuhui Zhang, Xue Zhao, Kai Wang, Chunyu Jia, Wei Zhang, Jiebing Tan, Xiaofen Chen, Qin Li, Hongyan Jiang, Rui An, Wenna Leng, Yongli Yang, Youcai An, Yanxia Wang and Yaodong Zhang
Vaccines 2025, 13(8), 826; https://doi.org/10.3390/vaccines13080826 - 1 Aug 2025
Viewed by 191
Abstract
The authors would like to make the following corrections to this published paper [...] Full article
20 pages, 3024 KiB  
Article
The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress
by Qin Guo, Jia-Er Liu, Lin-Xue Liu, Jian Gao and Bin Xu
Microorganisms 2025, 13(8), 1788; https://doi.org/10.3390/microorganisms13081788 - 31 Jul 2025
Viewed by 162
Abstract
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their [...] Read more.
Vibrio parahaemolyticus is a major foodborne pathogen worldwide, responsible for seafood-associated poisoning. Among its toxin genes, tdh2 is the most critical. To investigate the role of tdh2 in V. parahaemolyticus under gastrointestinal conditions, we constructed tdh2 deletion and complementation strains and compared their survival under acid (pH 3 and 4) and bile stress (2%). The results showed that tdh2 expression was significantly upregulated under cold (4 °C) and bile stress (0.9%). Survival assays and PI staining revealed that the tdh2 mutant strain (VP: △tdh2) was more sensitive to acid and bile stress than the wild-type (WT), and this sensitivity was rescued by tdh2 complementation. These findings suggest that tdh2 plays a protective role in enhancing V. parahaemolyticus tolerance to acid and bile stress. In the VP: △tdh2 strain, seven genes were significantly upregulated and six were downregulated as a result of tdh2 deletion. These genes included VPA1332 (vtrA), VPA1348 (vtrB), VP2467 (ompU), VP0301 and VP1995 (ABC transporters), VP0527 (nhaR), and VP2553 (rpoS), among others. Additionally, LC-MS/MS analysis identified 12 differential metabolites between the WT and VP: △tdh2 strains, including phosphatidylserine (PS) (17:2 (9Z,12Z) /0:0 and 20:1 (11Z) /0:0), phosphatidylglycerol (PG) (17:0/0:0), flavin mononucleotide (FMN), and various nucleotides. The protective mechanism of tdh2 may involve preserving cell membrane permeability through regulation of ompU and ABC transporters and enhancing electron transfer efficiency via regulation of nhaR. The resulting reduction in ATP, DNA, and RNA synthesis—along with changes in membrane permeability and electron transfer due to decreased FMN—likely contributed to the reduced survival of the VP: △tdh2 strain. Meanwhile, the cells actively synthesized phospholipids to repair membrane damage, leading to increased levels of PS and PG. This study provides important insights into strategies for preventing and controlling food poisoning caused by tdh+ V. parahaemolyticus. Full article
Show Figures

Figure 1

19 pages, 5713 KiB  
Article
Diversity and Seasonal Abundance of Culicoides (Diptera: Ceratopogonidae) in Tengchong County of Yunnan, China
by Yi-Nan Wang, Ying-Liang Duan, Zhan-Hong Li, Jia-Ming Deng, Xing-Nan Sun, Xue-Ying Shen, An-Xi Yang and Shi-Long Li
Insects 2025, 16(8), 780; https://doi.org/10.3390/insects16080780 - 30 Jul 2025
Viewed by 203
Abstract
Culicoides (Diptera, Ceratopogonidae) are small biting midges and are known as vectors for many arboviruses, including bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV). Tengchong County of Yunnan Province, China, which borders Myanmar, has many private farms with goats, sheep, and cattle. [...] Read more.
Culicoides (Diptera, Ceratopogonidae) are small biting midges and are known as vectors for many arboviruses, including bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV). Tengchong County of Yunnan Province, China, which borders Myanmar, has many private farms with goats, sheep, and cattle. To estimate the risk of Culicoides-borne viral diseases such as bluetongue (BT) and epizootic hemorrhagic disease (EHD) in this area, an investigation of the diversity and abundance of Culicoides in Tengchong between May 2024 and April 2025 was performed. As a result, 70 collections totaling approximately 93,000 Culicoides were carried out at five farms (cattle + Asian buffaloes, goats, and sheep, respectively). Nineteen species were identified, and eight potential cryptic species were found. A total of 13 cox1 sequences and 4 28S sequences for 13 specimens were generated. The most dominant species were Obsoletus (44.1%), C. homotomus (23.3%), and C. arakawae (12.9%) at the bovine farm; C. tainanus (68.0%), C. orientalis (12.6%), and C. newsteadi (Asia) (6.3%) at the goat farm; and C. tainanus (73.6%), C. fenggangensis (7.3%), and C. sp. nr palpifer (6.3%) at the sheep farm. In this investigation, C. tainanus, Obsoletus, and C. orientalis were the most dominant potential BTV vectors, and the period between July and October may be the main period for epidemics of Culicoides-borne viruses in Tengchong. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

17 pages, 7377 KiB  
Article
Comparative Untargeted Metabolomic Analysis of Fruiting Bodies from Three Sanghuangporus Species
by Zixuan Jiang, Shimao Chen, Jia Song, Tao Xie, Yu Xue and Qingshan Yang
J. Fungi 2025, 11(8), 558; https://doi.org/10.3390/jof11080558 - 28 Jul 2025
Viewed by 394
Abstract
Sanghuangporus spp. are medicinal fungi with significant therapeutic value, but their taxonomic ambiguity and frequent market adulteration have hindered their standardized utilization. In this study, untargeted metabolomics based on UPLC-Q-TOF-MS was employed to systematically analyze the metabolic profiles of three Sanghuangporus species: Sanghuangporus [...] Read more.
Sanghuangporus spp. are medicinal fungi with significant therapeutic value, but their taxonomic ambiguity and frequent market adulteration have hindered their standardized utilization. In this study, untargeted metabolomics based on UPLC-Q-TOF-MS was employed to systematically analyze the metabolic profiles of three Sanghuangporus species: Sanghuangporus. sanghuang (SS), Sanghuangporus. vaninii (SV), and Sanghuangporus. baumii (SB). A total of 788 metabolites were identified and classified into 16 categories, among which 97 were common differential metabolites, including bioactive compounds such as flavonoids, polysaccharides, and terpenoids. Multivariate statistical analyses (PCA and OPLS-DA) revealed distinct metabolic patterns among the species. KEGG pathway enrichment analysis showed that the differential metabolites were mainly involved in flavonoid and isoflavonoid biosynthesis. Notably, SV and SB exhibited significantly higher levels of several key bioactive compounds, including Apigenin and D-glucuronolactone, compared to SS. These findings highlight substantial interspecies differences in metabolic composition and pharmacological potential, providing a scientific basis for species authentication, quality control, and medicinal development of Sanghuangporus. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites from Fungi)
Show Figures

Figure 1

12 pages, 1515 KiB  
Article
Expression of Heat Shock Protein 90 Genes Induced by High Temperature Mediated Sensitivity of Aphis glycines Matsumura (Hemiptera: Aphididae) to Insecticides
by Xue Han, Yulong Jia, Changchun Dai, Xiaoyun Wang, Jian Liu and Zhenqi Tian
Insects 2025, 16(8), 772; https://doi.org/10.3390/insects16080772 - 28 Jul 2025
Viewed by 361
Abstract
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), [...] Read more.
Soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean fields. While high-temperature stress induced by global warming can initially suppress aphid populations, these pests may eventually adapt, leading to more severe infestations and crop damage. Heat shock proteins (HSPs), which are upregulated in response to heat stress to protect aphid development, also confer tolerance to other abiotic stressors, including insecticides. To investigate the role of HSPs in insecticide resistance in A. glycines, we analyzed the expression profiles of three AgHsp90 genes (AgHsp75, AgHsp83, and AgGrp94) following exposure to high temperatures and insecticides. Functional validation was performed using RNA interference (RNAi) to silence AgHsp90 genes. Our results demonstrated that AgHsp90 genes were significantly upregulated under both heat and insecticide stress conditions. Furthermore, after feeding on dsRNA of AgHsp90 genes, mortality rates of A. glycines significantly increased when exposed to imidacloprid and lambda-cyhalothrin. This study provides evidence that AgHsp90 genes play a crucial role in mediating thermal tolerance and insecticide resistance in A. glycines. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

20 pages, 19986 KiB  
Article
In Situ Targeting RGD-Modified Cyclodextrin Inclusion Complex/Hydrogel Hybrid System for Enhanced Glioblastoma Therapy
by Xiaofeng Yuan, Zhenhua Wang, Pengcheng Qiu, Zhenhua Tong, Bingwen Wang, Yingjian Sun, Xue Sun, Lu Sui, Haiqiang Jia, Jiajun Wang, Haifeng Tang and Weiliang Ye
Pharmaceutics 2025, 17(7), 938; https://doi.org/10.3390/pharmaceutics17070938 - 20 Jul 2025
Viewed by 325
Abstract
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor, characterized by high malignancy, recurrence rate, and dismal prognosis, thereby demanding innovative therapeutic strategies. In this study, we report a novel in situ targeting inclusion complex hydrogel hybrid system (DOX/RGD-CD@Gel) that integrates [...] Read more.
Background/Objectives: Glioblastoma (GBM) remains the most aggressive primary brain tumor, characterized by high malignancy, recurrence rate, and dismal prognosis, thereby demanding innovative therapeutic strategies. In this study, we report a novel in situ targeting inclusion complex hydrogel hybrid system (DOX/RGD-CD@Gel) that integrates doxorubicin (DOX) with RGD-conjugated cyclodextrin (RGD-CD) and a thermosensitive hydrogel for enhanced GBM therapy. Methods: The DOX/RGD-CD@Gel system was prepared by conjugating doxorubicin (DOX) with RGD-modified cyclodextrin (RGD-CD) and embedding it into a thermosensitive hydrogel. The drug delivery and antitumor efficacy of this system were evaluated in vitro and in vivo. Results: In vitro and in vivo evaluations demonstrated that DOX/RGD-CD@Gel significantly enhanced cytotoxicity compared to free DOX or DOX/CD formulations. The targeted delivery system effectively promoted apoptosis and inhibited cell proliferation and metastasis in GBM cells. Moreover, the hydrogel-based system exhibited prolonged drug retention in the brain, as evidenced by its temperature- and pH-responsive release characteristics. In a GBM mouse model, DOX/RGD-CD@Gel significantly suppressed tumor growth and improved survival rates. Conclusions: This study presents a paradigm of integrating a targeted inclusion complex with a thermosensitive hydrogel, offering a safe and efficacious strategy for localized GBM therapy with potential translational value. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

19 pages, 2862 KiB  
Article
Characterization of Soil Bacterial Communities in Different Vegetation Types on the Lava Plateau of Jingpo Lake
by Yanli Zhang, Jiaxing Huang, Jiaxin Xue, Kaining Zhang, Xintong Chen, Jianhui Jia and Qingyang Huang
Microorganisms 2025, 13(7), 1648; https://doi.org/10.3390/microorganisms13071648 - 11 Jul 2025
Viewed by 388
Abstract
To explore the interactions within the vegetation–soil–microorganism continuum on the Jingpo Lake lava platform, five vegetation types—grassland (GL), shrubland (SL), deciduous broad-leaved forest (DB), coniferous and broad-leaved mixed forest (CB), and coniferous forest (CF)—were examined. Significant differences in the soil physical and chemical [...] Read more.
To explore the interactions within the vegetation–soil–microorganism continuum on the Jingpo Lake lava platform, five vegetation types—grassland (GL), shrubland (SL), deciduous broad-leaved forest (DB), coniferous and broad-leaved mixed forest (CB), and coniferous forest (CF)—were examined. Significant differences in the soil physical and chemical properties were identified among these types (p < 0.05). The soil bacterial community structures also varied significantly (p < 0.05), with Actinobacteriota, Proteobacteria, and Acidobacteria as the dominant phyla, exhibiting notable genus-level differences (p < 0.05). The soil organic matter (SOM), available nitrogen (AN), total nitrogen (TN), and soil water content (SWC) were significantly correlated with the bacterial community structure (p < 0.05 or p < 0.01), acting as key determinants of the microbial community structure and function. PICRUSt2 functional predictions revealed significant variations in the metabolic functions of the soil bacterial communities across vegetation types, indicating distinct functional specializations. In conclusion, the Jingpo Lake lava plateau harbors abundant bacterial resources. When devising vegetation adaptation strategies, it is essential to take into account variations in the rhizosphere soil bacteria across different vegetation types. Furthermore, prioritizing the implementation of forest vegetation is crucial in the adaptive management of the lava plateau. This approach holds significant implications for studying the bacterial diversity in the lava plateau and exploring the cultivation and application of functional bacteria in extreme environments. Full article
Show Figures

Figure 1

15 pages, 1423 KiB  
Review
Sperm Membrane Stability: In-Depth Analysis from Structural Basis to Functional Regulation
by Shan-Hui Xue, Bing-Bing Xu, Xiao-Chun Yan, Jia-Xin Zhang and Rui Su
Vet. Sci. 2025, 12(7), 658; https://doi.org/10.3390/vetsci12070658 - 11 Jul 2025
Viewed by 348
Abstract
Sperm membrane stability is a key factor in determining sperm viability and fertilization capability, with broad implications ranging from basic reproductive biology to livestock breeding practices. This comprehensive review examines the structural and functional mechanisms underlying sperm membrane integrity, including defensive barrier functions, [...] Read more.
Sperm membrane stability is a key factor in determining sperm viability and fertilization capability, with broad implications ranging from basic reproductive biology to livestock breeding practices. This comprehensive review examines the structural and functional mechanisms underlying sperm membrane integrity, including defensive barrier functions, potentiometric ion channel regulation, and motility modulation that collectively optimize sperm survival, motility, and fertilization potential. Environmental factors such as temperature fluctuations, abnormal pH levels (outside the optimal 7.2–8.2 range), pathological conditions, and hormonal imbalances can compromise membrane stability by inducing oxidative stress and protein denaturation. Key regulatory proteins, notably NPC2 for cholesterol homeostasis, Flotillin proteins for lipid raft organization, and Annexin V for membrane repair mechanisms, demonstrate essential roles in maintaining structural integrity. In livestock reproduction, membrane stability research facilitates the optimization of cryoprotectant formulations and freezing protocols, resulting in 15–25% improvements in post-thaw sperm survival rates and enhanced artificial insemination success. These findings provide valuable insights for advancing assisted reproductive technologies and improving reproductive efficiency in animal husbandry. Full article
Show Figures

Figure 1

21 pages, 7262 KiB  
Article
Integrative Multi-Omics Analysis Reveals the Molecular Characteristics, Tumor Microenvironment, and Clinical Significance of Ubiquitination Mechanisms in Lung Adenocarcinoma
by Deyu Long, Yajing Xue, Xiushi Yu, Xue Qin, Jiaxin Chen, Jia Luo, Ketao Ma, Lili Wei and Xinzhi Li
Int. J. Mol. Sci. 2025, 26(13), 6501; https://doi.org/10.3390/ijms26136501 - 6 Jul 2025
Viewed by 506
Abstract
Ubiquitination is a dynamic and reversible post-translational modification mediated by ubiquitination regulators (UBRs), which plays an essential role in protein stability, cell differentiation and immunity. Dysregulation of UBRs can lead to destabilization of biological processes and may induce serious human diseases, including cancer. [...] Read more.
Ubiquitination is a dynamic and reversible post-translational modification mediated by ubiquitination regulators (UBRs), which plays an essential role in protein stability, cell differentiation and immunity. Dysregulation of UBRs can lead to destabilization of biological processes and may induce serious human diseases, including cancer. Many UBRs, such as E3 ubiquitin ligases and deubiquitinases (DUBs), have been identified as potential drug targets for cancer therapy. However, the potential clinical value of UBRs in lung adenocarcinoma (LUAD) remains to be elucidated. Here, we identified 17 hub UBRs from high-confidence protein–protein interaction networks of UBRs correlated with cancer hallmark-related pathways using four topological algorithms. The expression of hub UBRs is affected by copy number variation and post-transcriptional regulation, and their high expression is often detrimental to patient survival. Based on the expression profiles of hub UBRs, patients can be classified into two ubiquitination subtypes with different characteristics. These subtypes exhibit significant differences across multiple dimensions, including survival, expression level, mutation burden, female predominance, infiltration level, immune profile, and drug response. In addition, we established a scoring system for evaluating the ubiquitination status of individual LUAD patients, called the ubiquitination-related risk (UB_risk) score, and found that patients with low scores are more likely to gain advantages from immunotherapy. The results of this study emphasize the critical role of ubiquitination in the classification, tumor microenvironment and immunotherapy of LUAD. The construction of the UB_risk scoring system lays a research foundation for evaluating the ubiquitination status of individual LUAD patients and formulating precise treatment strategies from the ubiquitination level. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Figure 1

12 pages, 3805 KiB  
Article
Preparation of Graft-Functionalized SBS/SBS Composite Latex Modifier and Its Effect on Emulsified Asphalt Properties
by Kunyu Wang, Yifan Liu, Zhenhao Cao, Yanyan Zhang, Jia Wang and Xue Li
Processes 2025, 13(7), 2125; https://doi.org/10.3390/pr13072125 - 3 Jul 2025
Viewed by 352
Abstract
To broaden clean asphalt modification methods, this study employs a composite polymer of maleic anhydride-grafted styrene-butadiene-styrene (MA-g-SBS) and styrene-butadiene-styrene (SBS) as a modifier. The composite is formulated into polymer latex and used to modify emulsified asphalt. Routine performance tests were conducted on MA-g-SBS/SBS [...] Read more.
To broaden clean asphalt modification methods, this study employs a composite polymer of maleic anhydride-grafted styrene-butadiene-styrene (MA-g-SBS) and styrene-butadiene-styrene (SBS) as a modifier. The composite is formulated into polymer latex and used to modify emulsified asphalt. Routine performance tests were conducted on MA-g-SBS/SBS composite latex-modified emulsified asphalt (MSMEA) with varying ratios to determine the optimal composition. The ideal ratio was found to be MA-g-SBS:SBS = 1:4. Subsequently, conventional property tests, rheological analyses, microphase structure observations, and bending beam creep tests were conducted on MSMEA with the optimal ratio to assess the impact of the composite latex on asphalt performance. Findings indicated that increasing the latex content significantly enhanced the softening point and ductility while reducing penetration. These macroscopic improvements were notably superior to those achieved with single SBS latex modification. Fluorescence microscopy revealed that at low dosages, the MA-g-SBS/SBS composite dispersed uniformly as point-like structures within the asphalt. At higher dosages (above 5%), a distinct network structure emerged. The addition of the composite latex raised the complex shear modulus and rutting factor while reducing the phase angle, with pronounced fluctuations observed between 4% and 5% dosages. This suggests a substantial enhancement in the high-temperature performance of the emulsified asphalt, attributed to the formation of the network structure. FT-IR results confirmed that a chemical reaction occurred during the modification process. Additionally, the bending beam creep test demonstrated that the composite latex reduced asphalt brittleness and improved its low-temperature performance. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 3918 KiB  
Article
Improvements in Wettability and Tribological Behavior of Zirconia Artificial Teeth Using Surface Micro-Textures
by Yayun Liu, Guangjie Wang, Fanshuo Jia, Xue Jiang, Ning Jiang, Chuanyang Wang and Zhouzhou Lin
Materials 2025, 18(13), 3117; https://doi.org/10.3390/ma18133117 - 1 Jul 2025
Viewed by 324
Abstract
Zirconia ceramics are promising materials for restoration and are widely used in the field of artificial teeth. However, wear resistance affects the longevity of artificial teeth. In this study, peacock tail feather micro-textures and groove micro-textures are prepared on the surfaces of zirconia [...] Read more.
Zirconia ceramics are promising materials for restoration and are widely used in the field of artificial teeth. However, wear resistance affects the longevity of artificial teeth. In this study, peacock tail feather micro-textures and groove micro-textures are prepared on the surfaces of zirconia ceramics via the laser ablation technique to improve their tribological properties. The effects of micro-textures on the surface wettability and tribological properties of zirconia ceramics are studied. The micro-textures improve the surface wettability and tribological properties of zirconia ceramics. The average coefficient of friction of peacock tail feather micro-textured samples decreases by 53% compared to that of the samples without micro-textures. Different operating conditions affect the friction properties of zirconia ceramics. The samples have the best friction performance when the rotational speed, load, and acid/alkaline environment are 200 r/min, 15 N, and weakly alkaline, respectively. Furthermore, the mechanism by which surface micro-textures reduce frictional wear is as follows: the textured grooves store debris, and the bottom edge of the textured groove acts as a cutting tool to cut debris, preventing debris from scratching the surface. The micro-textures store lubricant and form a liquid film on the ceramic surface to reduce wear. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

20 pages, 5900 KiB  
Article
Vibration Damage Analysis of Bottom Hole Assembly Under Axial Impact Based on Dynamic Analysis
by Qilong Xue, Yafeng Li, Jianbo Jia and Lun Zhao
Appl. Sci. 2025, 15(13), 7388; https://doi.org/10.3390/app15137388 - 30 Jun 2025
Cited by 1 | Viewed by 247
Abstract
Impact Drilling Technology is one of the most effective methods for enhancing the penetration rate and efficiency in hard rock formations. Downhole axial vibration impact tools can provide a stable impact load, but they also increase the complexity of the Bottom Hole Assembly [...] Read more.
Impact Drilling Technology is one of the most effective methods for enhancing the penetration rate and efficiency in hard rock formations. Downhole axial vibration impact tools can provide a stable impact load, but they also increase the complexity of the Bottom Hole Assembly (BHA) motion. Addressing the problem of vibration fatigue in the lower BHA when subjected to high-frequency impact stresses during impact drilling, this study utilizes finite-element impact modules and Design-Life fatigue analysis software to establish a nonlinear dynamic model of the drill string assembly under axial excitation. It investigates the influence patterns of control parameters, such as the impact energy and impact frequency, on BHA vibration damage and rock-breaking efficiency. The results show that the vibration characteristics of the BHA are significantly affected by the impact tool’s control parameters. Increasing the input impact energy intensifies the amplitude of alternating stress in the drill string system. Meanwhile, the equivalent stress fluctuation of the drill string tends to stabilize at high frequencies above 100 Hz, indicating that high-frequency impacts are beneficial for mitigating vibration damage and prolonging the service life of the BHA. This study provides a theoretical basis for reducing the drill string fatigue damage and optimizing the drilling parameters for an improved performance. Full article
Show Figures

Figure 1

50 pages, 22023 KiB  
Review
Research Advancements of Wear-Resistant Coatings Fabricated on Aluminum and Its Alloys
by Bohao Jia, Ruoqi Ren, Hongliang Zhang, Tiannan Man, Xue Cui, Teng Liu, Tianzhang Zhao, Yurii Luhovskyi and Zhisheng Nong
Coatings 2025, 15(7), 750; https://doi.org/10.3390/coatings15070750 - 25 Jun 2025
Viewed by 568
Abstract
The low hardness and insufficient wear resistance of aluminum and its alloys restrict their broader application in various fields. The application of surface protective coatings can effectively enhance the hardness and wear resistance of aluminum and its alloys. This article provides a comprehensive [...] Read more.
The low hardness and insufficient wear resistance of aluminum and its alloys restrict their broader application in various fields. The application of surface protective coatings can effectively enhance the hardness and wear resistance of aluminum and its alloys. This article provides a comprehensive review of the recent research progress of wear-resistant coatings fabricated on aluminum and its alloys. The relevant achievements in the recent research works of preparing wear-resistant coatings by one-step methods (such as anodic oxidation, micro-arc oxidation, cold spraying, plasma spraying, and electrodeposition) and two-step methods (anodic oxidation and physical vapor deposition, micro-arc oxidation and sealing, magnetron sputtering, and plasma nitriding) are mainly introduced. The working principles of each coating preparation method, along with their impacts on the microstructure and tribological performance of the coatings, were systematically examined. Additionally, a comparative analysis was conducted to evaluate the advantages and disadvantages of each coating preparation method. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

Back to TopTop