The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains, Plasmids, and Growth Conditions
2.2. The Growth Measurement
2.3. Response of V. parahaemolyticus to Cold and Bile Stress
2.4. The Simulation of Gastrointestinal Stress In Vitro
2.4.1. Acid Tolerance
2.4.2. Bile Tolerance
2.5. SDS-PAGE Analysis of Whole-Cell and Secreted Proteins
2.6. Construction of V. parahaemolyticus ∆tdh2 Mutant
2.7. Construction of the Complemented Strain VP-C-△tdh2
2.8. RNA Extraction and Real-Time Fluorescence Quantitative PCR (RT-qPCR) Analysis
2.9. Membrane Integrity Assessment by Propidium Iodide Staining
2.10. Erythrocyte Hemolysis Assay
2.11. LC-MS Analysis on Intracellular Metabolites of V. parahaemolyticus
2.12. Statistical Analysis
3. Results
3.1. Expression of tdh2 Significantly Increased as Response to Environmental Stress
3.2. Construction and Validation of the tdh2 Knockout and Complemented Strains
3.3. tdh2 Improved the Tolerance of V. parahaemolyticus to Acid Stress
3.4. tdh2 Improved the Bile Tolerance of V. parahaemolyticus and Membrane Integrity
3.5. Gene Expression Changes in tdh2 Deletion Strain, Focusing on ABC Transporters
3.6. Altered Membrane Phospholipid Composition and Metabolism in tdh2 Mutant
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.H.; Sun, H.; Gao, Y.H.; Bu, S.J.; Zhang, Z.B.; Wang, C.; Zhang, H.Y.; Zhang, W.H.; Wan, J.Y. A novel biosensor for detecting V. parahaemolyticus based on cascade signal amplification of CRISPR/Cas14a and Exo III. Food Control 2025, 167, 110788. [Google Scholar] [CrossRef]
- Elmahdi, S.; Dasilva, L.V.; Parveen, S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiol. 2016, 57, 128–134. [Google Scholar] [CrossRef]
- Trinanes, J.; Martinez-Urtaza, J. Future scenarios of risk of Vibrio infections in a warming planet: A global mapping study. Lancet Planet. Health 2021, 5, e426–e435. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.J.; Han, H.H.; Guo, Y.C.; Zhang, R.H.; Zhan, L.; Zhou, Y.J.; Qiao, X.; Liu, H.; Ma, X.C.; Liu, J.K.; et al. Epidemiological characteristics of sporadic foodborne diseases caused by Vibrio parahaemolyticus—China, 2013–2022. China CDC Wkly. 2024, 6, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, F.-R.; Zhou, Y.-B.; Hu, L.-Q.; Lu, W.; Zhang, S.-H.; Hu, H.; Huang, X.-E. Epidemiological characteristics of foodborne disease outbreaks in a hospital: A 5-year retrospective study. Int. J. Gen. Med. 2025, 18, 1529–1542. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.P.; Zhou, S.X.; Wang, X.; Lu, Q.B.; Shi, L.S.; Ren, X.; Zhang, H.Y.; Wang, Y.F.; Lin, S.H.; Zhang, C.H.; et al. Chinese Centers for Disease Control and Prevention (CDC) Etiology of Diarrhea Surveillance Study Team. Etiological, epidemiological, and clinical features of acute diarrhea in China. Nat. Commun. 2021, 12, 2464. [Google Scholar] [CrossRef]
- Ortiz-Alvarez, M.J.; Santander-Pulgar, E.R.; Allendes-Siles, A.K.; Vicencio-Ahumada, M.A. Epidemiological surveillance of bacterial agents causing foodborne diseases in northern Chile, 2016–2022. Rev. De Salud Publica 2024, 26, 111847. [Google Scholar]
- Fearnley, E.; Leong, L.E.X.; Centofanti, A.; Dowsett, P.; Combs, B.G.; Draper, A.D.K.; Hocking, H.; Howden, B.; Horan, K.; Wilmot, M. Vibrio parahaemolyticus foodborne illness associated with oysters, Australia, 2021–2022. Emerg. Infect. Dis. 2024, 30, 2271–2278. [Google Scholar] [CrossRef]
- Gavilan, R.G.; Caro-Castro, J.; Blondel, C.J.; Martinez-Urtaza, J. Vibrio parahaemolyticus epidemiology and pathogenesis: Novel insights on an emerging foodborne pathogen. In Vibrio spp. Infections. Advances in Experimental Medicine and Biology; Almagro-Moreno, S., Pukatzki, S., Eds.; Springer: Cham, Switzerland, 2023; p. 1404. [Google Scholar] [CrossRef]
- Letchumanan, V.; Chan, K.G.; Lee, L.H. Vibrio parahaemolyticus: A review on the pathogenesis, prevalence, and advance molecular identification techniques. Front. Microbiol. 2014, 5, 705. [Google Scholar] [CrossRef]
- Baba, K.; Shirai, H.; Terai, A.; Kumagai, K.; Takeda, Y.; Nishibuchi, M. Similarity of the tdh gene-bearing plasmids of Vibrio cholerae non-o1 and Vibrio parahaemolyticus. Microb. Pathog. 1991, 10, 61–70. [Google Scholar] [CrossRef]
- Sun, F.J.; Zhang, Y.Q.; Qiu, Y.F.; Yang, H.Y.; Yang, W.H.; Yin, Z.; Wang, J.; Yang, R.F.; Xia, P.Y.; Zhou, D.S. H-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus. Front. Microbiol. 2014, 5, 675. [Google Scholar] [CrossRef]
- Izutsu, K.; Kurokawa, K.; Tashiro, K.; Kuhara, S.; Hayashi, T.; Honda, T.; Iida, T. Comparative genomic analysis using microarray demonstrates a strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains. Infect. Immun. 2008, 76, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Kundu, N.; Tichkule, S.; Pandit, S.B.; Chattopadhyay, K. Disulphide bond restrains C-Terminal region of thermostable direct hemolysin during folding to promote oligomerization. Biochem. J. 2017, 474, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Yanagihara, I.; Nakahira, K.; Yamane, T.; Kaieda, S.; Mayanagi, K.; Hamada, D.; Fukui, T.; Ohnishi, K.; Kajiyama, S.; Shimizu, T.; et al. Structure and functional characterization of Vibrio parahaemolyticus thermostable direct hemolysin. J. Biol. Chem. 2010, 285, 16267–16274. [Google Scholar] [CrossRef] [PubMed]
- Hardy, S.P.; Nakano, M.; Iida, T. Single channel evidence for innate pore-formation by Vibrio parahaemolyticus thermostable direct haemolysin (tdh) in phospholipid bilayers. FEMS Microbiol. Lett. 2004, 240, 81–85. [Google Scholar] [CrossRef]
- Matsuda, S.; Kodama, T.; Okada, N.; Okayama, K.; Honda, T.; Iida, T. Association of Vibrio parahaemolyticus thermostable direct hemolysin with lipid rafts is essential for cytotoxicity but not hemolytic activity. Infect. Immun. 2010, 78, 603. [Google Scholar] [CrossRef]
- Raghunath, P. Roles of thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) in Vibrio parahaemolyticus. Front. Microbiol. 2014, 5, 805. [Google Scholar] [CrossRef]
- Provenzano, D.; Schuhmacher, D.A.; Barker, J.L.; Klose, K.E. The virulence regulatory protein toxr mediates enhanced bile resistance in Vibrio cholerae and other pathogenic Vibrio species. Infect. Immun. 2015, 68, 1491. [Google Scholar] [CrossRef]
- Chiang, M.L.; Chou, C.C. Expression of superoxide dismutase, catalase and thermostable direct hemolysin by, and growth in the presence of various nitrogen and carbon sources of heat-shocked and ethanol-shocked Vibrio parahaemolyticus. Int. J. Food Microbiol. 2008, 121, 268–274. [Google Scholar] [CrossRef]
- Krysenko, S.; Wohlleben, W. Polyamine and ethanolamine metabolism in bacteria as an important component of nitrogen assimilation for survival and pathogenicity. Med. Sci. 2022, 10, 40. [Google Scholar] [CrossRef]
- Kodama, T.; Gotoh, K.; Hiyoshi, H.; Morita, M.; Izutsu, K.; Akeda, Y.; Park, K.S.; Cantarelli, V.V.; Dryselius, R.; Iida, T.; et al. Two regulators of Vibrio parahaemolyticus play important roles in enterotoxicity by controlling the expression of genes in the Vp-PAI region. PLoS ONE 2010, 5, e8678. [Google Scholar] [CrossRef]
- Whitaker, W.B.; Parent, M.A.; Naughton, L.M.; Richards, G.P.; Blumerman, S.L.; Boyd, E.F. Modulation of responses of Vibrio Parahaemolyticus O3:K6 to pH and temperature stresses by growth at different salt concentrations. Appl. Environ. Microbiol. 2010, 76, 4720–4729. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Zhang, Y.; Gao, H.; Zhang, L.Y.; Yin, Z.; Huang, X.X.; Zhou, D.S.; Yang, H.Y.; Yang, W.H.; Wang, L. Vibrio parahaemolyticus CalR down regulates the thermostable direct hemolysin (tdh) gene transcription and thereby inhibits hemolytic activity. Gene 2017, 613, 39–44. [Google Scholar] [CrossRef]
- Nakano, M.; Takahashi, A.; Su, Z.; Harada, N.; Mawatari, K.; Nakaya, Y. Hfq regulates the expression of the thermostable direct hemolysin gene in Vibrio parahaemolyticus. BMC Microbiol. 2008, 8, 155. [Google Scholar] [CrossRef]
- Hasegawa, A.; Hara-Kudo, Y.; Ogata, K.; Saito, S.; Sugita-Konishi, Y.; Kumagai, S. Differences in the stress tolerances of Vibrio parahaemolyticus strains due to their source and harboring of virulence genes. J. Food Prot. 2013, 76, 1456. [Google Scholar] [CrossRef]
- Hubbard, T.P.; Chao, M.C.; Abel, S.; Blondel, C.J.; zur Wiesch, P.A.; Zhou, X.H.; Davis, B.M.; Waldor, M.K. Genetic analysis of Vibrio parahaemolyticus intestinal colonization. Proc. Natl. Acad. Sci. USA 2016, 113, 6283–6288. [Google Scholar] [CrossRef]
- Coutard, F.; Pommepuy, M.; Loaec, S.; Hervio-Heath, D. mRNA detection by reverse transcription-PCR for monitoring viability and potential virulence in a pathogenic strain of Vibrio parahaemolyticus in viable but nonculturable state. J. Appl. Microbiol. 2005, 98, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Livny, J.; Zhou, X.; Mandlik, A.; Hubbard, T.; Davis, B.M.; Waldor, M.K. Comparative RNA-seq based dissection of the regulatory networks and environmental stimuli underlying Vibrio parahaemolyticus gene expression during infection. Nucleic Acids Res. 2014, 42, 12212–12223. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.L.; Oliver, J.D.; Hinchung, W. Adaptation of Vibrio vulnificus and an rpoS mutant to bile salts. Int. J. Food Microbiol. 2010, 140, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, K.; Kodama, T.; Hiyoshi, H.; Izutsu, K.; Park, K.S.; Dryselius, R.; Akeda, Y.; Honda, T.; Iida, T. Bile acid-induced virulence gene expression of Vibrio parahaemolyticus reveals a novel therapeutic potential for bile acid sequestrants. PLoS ONE 2010, 5, e13365. [Google Scholar] [CrossRef]
- Okada, R.; Matsuda, S.; Iida, T. Vibrio parahaemolyticus VtrA is a membrane-bound regulator and is activated via oligomerization. PLoS ONE 2017, 12, e0187846. [Google Scholar] [CrossRef]
- Rivera-Cancel, G.; Orth, K. Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus. Gut Microbes 2017, 8, 366–373. [Google Scholar] [CrossRef]
- Whitaker, W.B.; Parent, M.A.; Boyd, A.; Richards, G.P.; Boyd, E.F. The Vibrio parahaemolyticus ToxRs regulator is required for stress tolerance and colonization in a novel orogastric streptomycin-induced adult murine model. Infect. Immun. 2012, 80, 1834–1845. [Google Scholar] [CrossRef]
- Haines-Menges, B.; Whitaker, W.B.; Boyd, E.F. Alternative sigma factor RpoE is important for Vibrio parahaemolyticus cell envelope stress response and intestinal colonization. Infect. Immun. 2014, 82, 3667–3677. [Google Scholar] [CrossRef]
- Du, D.; Veen, H.W.V.; Murakami, S.; Pos, K.M.; Luisi, B.F. Structure, mechanism and cooperation of bacterial multidrug transporters. Curr. Opin. Struct. Biol. 2015, 33, 76–91. [Google Scholar] [CrossRef]
- Matsuo, T.; Ogawa, W.; Tsuchiya, T.; Kuroda, T. Overexpression of vmeTUV encoding a multidrug efflux transporter of Vibrio parahaemolyticus causes bile acid resistance. Gene 2014, 541, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Pannuri, A.; Yakhnin, H.; Vakulskas, C.A.; Edwards, A.N.; Babitzke, P.; Romeo, T. Translational repression of NhaR, a novel pathway for multi-tier regulation of biofilm circuitry by CsrA. J. Bacteriol. 2012, 194, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, P. Characterization of the rpoS Gene and Its Role in the Survival of Vibrio parahaemolyticus Under Environmental Stresses. Ph.D. Thesis, University of Connecticut, Storrs, CT, USA, 2005. [Google Scholar]
- Ivanova, P.T.; Milne, S.B.; Byrne, M.O.; Xiang, Y.; Brown, H.A. Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry. Methods Enzymol. 2007, 432, 21–57. [Google Scholar] [CrossRef] [PubMed]
- Yatsyshyn, V.Y.; Fedorovych, D.V.; Sibirny, A.A. The microbial synthesis of flavin nucleotides: A review. Appl. Biochem. Microbiol. 2009, 45, 115–124. [Google Scholar] [CrossRef]
- Steuber, J.; Vohl, G.; Muras, V.; Toulouse, C.; Claussen, B.; Vorburger, T.; Fritz, G. The structure of Na+-translocating of NADH: Ubiquinone oxidoreductase of Vibrio cholerae: Implications on coupling between electron transfer and Na+ transport. Biol. Chem. 2015, 396, 1015–1030. [Google Scholar] [CrossRef]
Strains and Plasmids | Characteristics | Sources |
---|---|---|
V. Parahaemolyticus RIMD2210633 | tdh1+, tdh2+, O3:K6 serotype | Provided by Prof. Zhou Dongsheng |
VP: ∆tdh2 | tdh1+, tdh2−, O3:K6 serotype | Constructed in this study |
VP-C-△tdh2 | tdh1+, tdh2+, O3:K6 serotype | Constructed in this study |
E. coli S17-1-pir | RP4-2, pir | Provided by Prof. Zhou Dongsheng |
E. coli DH5α | F−, SupE 44, φ80dlacZ△M15, △(lacZYA-argF) U169, hsdR17 (rk−, mk+), recA1, endA1, gyrA96, thi-1, relA1 | Kept in our lab |
pDS132 | CmR, sacB, mob RP4, Suicide plasmid | Provided by Prof. Zhou Dongsheng |
pDS132-tdh2 | CmR, harboring truncated tdh2 region | Constructed in this study |
pACYC184 | CmR, TcR | Purchased from ATCC (Rockville, MD, USA) |
pACYC184-tdh2 | CmR, tdh2+, TcR | Constructed in this study |
Primers | Sequences |
---|---|
1314-A | AAACTGCAGTGACGTAGAGTCTAATCCAT |
1314-B | AAAAAAACCTCTGAATTGATTAATAACTTTGCCAG |
1314-C | TCAGAGGTTTTTTTCCAATGCAAAACTAGA |
1314-D | ACTGCATGCATATTTCCTCATCGTAA |
1314-E | AAGGTTATTTCTTTCCCCTAGCATC |
1314-d | TTTCGGCATGAGACTAGGGGAAT |
tdh2-F | CTTTTAATACCAATGCACC |
tdh2-R | GTTGAAGCTGTACTTGATCTG |
sacB-F | ACGGCACTGTCGCAAACTAT |
sacB-R | TTCCGTCACCGTCAAAGAT |
tdh-HB-F | CGCGGATCCATCTACCAAGCGATAAGGC |
tdh-HB-R | CCCAAGCTTGAAGCGAATAAATAGCGTG |
pDS132-F | GGCAGGTATATGTGATGGGT |
pDS132-R | GGATGTAACGCACTGAGAAG |
Primers | Sequences | Amplicon Size (bp) |
---|---|---|
16-23S-F | GCTGACAAAACAACAATTTATTGTT | 170 |
16-23S-R | GGAGTTTCGAGTTGATGAAC | |
VP1312-F | ATACTAAGATTATGCCGTCCTG | 127 |
VP1312-R | TTCGCCGAGATTGTTTGC | |
VP1313-F | GGCTTTGTTGCGTAATAGTGA | 86 |
VP1313-R | AATGCCTTATCGCTTGGTAG | |
VP1315-F | TCGCTTCTGATGGTTACACTT | 133 |
VP1315-R | TAATGCCTTATCGCTTGGTC | |
VP2553-F | GCATTTTGCTGACATCTTCG | 149 |
VP2553-R | CACCATTCGCTTGCCTATT | |
VPA1332-F | TGCTCCTCGCCTTGTGTG | 130 |
VPA1332-R | AAATGGGCTCTGATGTTACG | |
VPA1348-F | GAGAGAAACGCAGACGAGAG | 126 |
VPA1348-R | GCTAAAAGCACCTGTTGGTAATA | |
VP1549-F | CCAATCCAGCACAAGCCAT | 98 |
VP1549-R | AGCAAAAACGCACGAAGC | |
VP2925-F | GCAACACCAGCACCCATA | 171 |
VP2925-R | CAAAAACGGCATCATCCAC | |
VP2770-F | CATTTGGATGTTGTCGCCTG | 198 |
VP2770-R | GCTAAGCCTGGTTCAATCACTC | |
VP0819-F | TGTAATCGCCATTCGGTAG | 182 |
VP0819-R | CCTTTTCAGTGGTTGGTTGTA | |
VP0820-F | GAGATTCCGCTGGGTTTGTAA | 103 |
VP0820-R | CCTGTGGCTTCTGCTGTGA | |
VP2890-F | CGTCGCTCATCATCATTAGGTG | 102 |
VP2890-R | CGAACAAAATCGTGGGCAT | |
VPA1361-F | CTAACCACACAAGAAGCCAAC | 130 |
VPA1361-R | GCTCGCAAGTGATGAGTAAT | |
VPA1362-F | AGTTTTTGCCGCATCCAC | 195 |
VPA1362-R | ATTATGAAATCAGCAGGGGT | |
VP2516-F | TGTTGTCCGTCAGTTCTCG | 201 |
VP2516-R | TGGTTAGTGCGGTTGGTAG | |
VPA0606-F | CCATTGCGATGTGGCTCTG | 122 |
VPA0606-R | ACACCGACGCTTCTACCCTT | |
VP0301-F | CTGCTTTGGTTTATTTCTGG | 193 |
VP0301-R | TAGGGCATCCTGCGTTAGT | |
VP1995-F | ATCCGAAATCACCTTACCAT | 115 |
VP1995-R | GTTCAATCAACTTCACGCTG | |
VPA0660-F | CCTAACAGAGCGAGACGG | 154 |
VPA0660-R | GCGACCAAAAGAGACCAGT | |
VPA1436-F | CGCTACGCAACCCACATA | 174 |
VPA1436-R | ACATACCACCGCCACCTTCT | |
VP2467-F | ATACGGTGTTGGTTTCTGGGA | 88 |
VP2467-R | TAGGTTGCTGCTGTCTTTATTTAC | |
VPA0527-F | CATTTGCGAACGACTTTATC | 144 |
VPA0527-R | CGTCTTTAGAACCTTGCCA | |
RT-tdh2-F | CAACTTTTAATACCAATGCAC | 129 |
RT-tdh2-R | GCCATTTAGTACCTGACG |
Culture Condition | tdh2 Expression Fold | Colonies (CFU/mL) |
---|---|---|
Control | 1 a | (900 ± 10) × 105 a |
8 h + 0.9% bile for 4 h | (1.32 ± 0.2) × 104 b | (1 ± 0.5) × 105 b |
8 h + 4 °C for 4 h | (3.65 ± 0.4) × 102 c | (170 ± 6) × 105 c |
No. | Mz | Retention Time (min) | Identification | Pathway | Trend (VP: △tdh2/WT) |
---|---|---|---|---|---|
1 | 506.2478 | 8.35 | PS (17:2 (9Z,12Z) /0:0) | Glycerophospholipid metabolism | ↑ |
2 | 586.2769 | 10.14 | PS (20:1 (11Z) /0:0) | ↑ | |
3 | 497.2874 | 11.75 | PG (17:0/0:0) | ↑ | |
4 | 298.1201 | 1.03 | 2-Methylguanosine | Purine metabolism | ↓ |
5 | 284.0987 | 1.34 | Guanosine | ↓ | |
6 | 266.0863 | 1.43 | Deoxyguanosine | ↓ | |
7 | 137.0466 | 0.92 | Hypoxanthine | ↓ | |
8 | 282.1237 | 1.5 | 2′-O-Methyladenosine | - | ↓ |
9 | 136.0617 | 0.84 | Adenine | Purine metabolism | ↓ |
10 | 243.0616 | 1.02 | Uridine | Uridine monophosphate biosynthesis | ↓ |
11 | 127.0518 | 1.77 | Thymine | Pyrimidine metabolism | ↓ |
12 | 455.0968 | 2.69 | FMN | Riboflavin metabolism | ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Liu, J.-E.; Liu, L.-X.; Gao, J.; Xu, B. The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress. Microorganisms 2025, 13, 1788. https://doi.org/10.3390/microorganisms13081788
Guo Q, Liu J-E, Liu L-X, Gao J, Xu B. The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress. Microorganisms. 2025; 13(8):1788. https://doi.org/10.3390/microorganisms13081788
Chicago/Turabian StyleGuo, Qin, Jia-Er Liu, Lin-Xue Liu, Jian Gao, and Bin Xu. 2025. "The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress" Microorganisms 13, no. 8: 1788. https://doi.org/10.3390/microorganisms13081788
APA StyleGuo, Q., Liu, J.-E., Liu, L.-X., Gao, J., & Xu, B. (2025). The Toxin Gene tdh2 Protects Vibrio parahaemolyticus from Gastrointestinal Stress. Microorganisms, 13(8), 1788. https://doi.org/10.3390/microorganisms13081788