Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Authors = Farid Medjdoub ORCID = 0000-0002-4753-4718

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 5931 KiB  
Article
Continuously Beam-Steered Phased Array Antenna Using GaN Varactors for Millimeter-Wave Applications
by Abdelaziz Hamdoun, Farid Medjdoub, Mohamed Himdi, Malek Zegaoui and Olivier Lafond
Electronics 2024, 13(23), 4698; https://doi.org/10.3390/electronics13234698 - 28 Nov 2024
Viewed by 1316
Abstract
A continuously steerable beam patch antenna array employing a classical phase shifter based on GaN HEMTs is presented. Here, the GaN HEMTs are used as varactor diodes to achieve the tunability purpose. By controlling the DC bias of these varactors from −2 V [...] Read more.
A continuously steerable beam patch antenna array employing a classical phase shifter based on GaN HEMTs is presented. Here, the GaN HEMTs are used as varactor diodes to achieve the tunability purpose. By controlling the DC bias of these varactors from −2 V to 2 V, the proposed array antenna can provide continuous beam steering from 0° to +25° in the azimuth plane at 41.20 GHz, while achieving a low side-lobe level and good impedance matching performances. Using GaN HEMTs as varactors to achieve beam steering capability has never been tried before to the best of our knowledge. The measurement results agree well with the simulation results and validate the effectiveness of the proposed beam steering based on GaN technology. This proposed phased array antenna will find numerous applications within future wireless communications systems, especially for millimeter-wave applications. Full article
Show Figures

Figure 1

10 pages, 6384 KiB  
Article
Understanding and Quantifying the Benefit of Graded Aluminum Gallium Nitride Channel High-Electron Mobility Transistors
by François Grandpierron, Elodie Carneiro, Lyes Ben-Hammou, Jeong-Sun Moon and Farid Medjdoub
Micromachines 2024, 15(11), 1356; https://doi.org/10.3390/mi15111356 - 8 Nov 2024
Viewed by 1510
Abstract
Graded AlGaN channel High-Electron Mobility Transistor (HEMT) technology is emerging as a strong candidate for millimeter-wave applications, as superior efficiency and linearity performances can be achieved. In this paper, graded channel AlGaN/GaN HEMTs are investigated with the aim of further understanding the benefit [...] Read more.
Graded AlGaN channel High-Electron Mobility Transistor (HEMT) technology is emerging as a strong candidate for millimeter-wave applications, as superior efficiency and linearity performances can be achieved. In this paper, graded channel AlGaN/GaN HEMTs are investigated with the aim of further understanding the benefit of the graded AlGaN channel compared to more conventional GaN channel HEMTs. Our study employed a comprehensive simulation workflow including an extensive calibration of direct current (DC), S-parameter, large signal, and linearity characteristics at 30 GHz. Through device modeling and implementation of circuit-level simulation using Advanced Design System (ADS, 2023) software, both linearity and large signal performances could be mimicked remarkably. In agreement with previous studies, the results show that graded channel technology allows for a modified electron confinement leading to a 3D electron gas (3DEG). Consequently, the electric field peak inside of the channel is reduced without degrading the radio frequency (RF) performance, as the electron velocity is improved, thus offering a more linear transconductance and better linearity performances. As a result, for graded AlGaN channel HEMTs, a 6 dB output power back-off from peak power-added efficiency (PAE) is needed to achieve a carrier with a third-order intermodulation (C/IM3) ratio of 30 dBc against 9 dB for conventional AlGaN/GaN HEMTs with a lower associated PAE. Full article
Show Figures

Figure 1

10 pages, 3519 KiB  
Article
Optimization of Non-Alloyed Backside Ohmic Contacts to N-Face GaN for Fully Vertical GaN-on-Silicon-Based Power Devices
by Youssef Hamdaoui, Sofie S. T. Vandenbroucke, Sondre Michler, Katir Ziouche, Matthias M. Minjauw, Christophe Detavernier and Farid Medjdoub
Micromachines 2024, 15(9), 1157; https://doi.org/10.3390/mi15091157 - 15 Sep 2024
Cited by 3 | Viewed by 2448
Abstract
In the framework of fully vertical GaN-on-Silicon device technology development, we report on the optimization of non-alloyed ohmic contacts on the N-polar n+-doped GaN face backside layer. This evaluation is made possible by using patterned TLMs (Transmission Line Model) through direct laser writing [...] Read more.
In the framework of fully vertical GaN-on-Silicon device technology development, we report on the optimization of non-alloyed ohmic contacts on the N-polar n+-doped GaN face backside layer. This evaluation is made possible by using patterned TLMs (Transmission Line Model) through direct laser writing lithography after locally removing the substrate and buffer layers in order to access the n+-doped backside layer. As deposited non-alloyed metal stack on top of N-polar orientation GaN layer after buffer layers removal results in poor ohmic contact quality. To significantly reduce the related specific contact resistance, an HCl treatment is applied prior to metallization under various time and temperature conditions. A 3 min HCl treatment at 70 °C is found to be the optimum condition to achieve thermally stable high ohmic contact quality. To further understand the impact of the wet treatment, SEM (Scanning Electron Microscopy) and XPS (X-ray Photoelectron Spectroscopy) analyses were performed. XPS revealed a decrease in Ga-O concentration after applying the treatment, reflecting the higher oxidation susceptibility of the N-polar face compared to the Ga-polar face, which was used as a reference. SEM images of the treated samples show the formation of pyramids on the N-face after HCl treatment, suggesting specific wet etching planes of the GaN crystal from the N-face. The size of the pyramids is time-dependent; thus, increasing the treatment duration results in larger pyramids, which explains the degradation of ohmic contact quality after prolonged high-temperature HCl treatment. Full article
Show Figures

Figure 1

8 pages, 1798 KiB  
Communication
Low Trapping Effects and High Blocking Voltage in Sub-Micron-Thick AlN/GaN Millimeter-Wave Transistors Grown by MBE on Silicon Substrate
by Elodie Carneiro, Stéphanie Rennesson, Sebastian Tamariz, Kathia Harrouche, Fabrice Semond and Farid Medjdoub
Electronics 2023, 12(13), 2974; https://doi.org/10.3390/electronics12132974 - 6 Jul 2023
Cited by 3 | Viewed by 3304
Abstract
In this work, sub-micron-thick AlN/GaN transistors (HEMTs) grown on a silicon substrate for high-frequency power applications are reported. Using molecular beam epitaxy, an innovative ultrathin step-graded buffer with a total stack thickness of 450 nm enables one to combine an excellent electron confinement, [...] Read more.
In this work, sub-micron-thick AlN/GaN transistors (HEMTs) grown on a silicon substrate for high-frequency power applications are reported. Using molecular beam epitaxy, an innovative ultrathin step-graded buffer with a total stack thickness of 450 nm enables one to combine an excellent electron confinement, as reflected by the low drain-induced barrier lowering, a low leakage current below 10 µA/mm and low trapping effects up to a drain bias VDS = 30 V while using sub-150 nm gate lengths. As a result, state-of-the-art GaN-on-silicon power performances at 40 GHz have been achieved, showing no degradation after multiple large signal measurements in deep class AB up to VDS = 30 V. Pulsed-mode large-signal characteristics reveal a combination of power-added efficiency (PAE) higher than 35% with a saturated output power density (POUT) of 2.5 W/mm at VDS = 20 V with a gate-drain distance of 500 nm. To the best of our knowledge, this is the first demonstration of high RF performance achieved with sub-micron-thick GaN HEMTs grown on a silicon substrate. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

7 pages, 2393 KiB  
Article
Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier
by Kathia Harrouche, Srisaran Venkatachalam, Lyes Ben-Hammou, François Grandpierron, Etienne Okada and Farid Medjdoub
Micromachines 2023, 14(2), 291; https://doi.org/10.3390/mi14020291 - 22 Jan 2023
Cited by 11 | Viewed by 3753
Abstract
In this paper, we report on an enhancement of mm-wave power performances with a vertically scaled AlN/GaN heterostructure. An AlGaN back barrier is introduced underneath a non-intentionally doped GaN channel layer, enabling the prevention of punch-through effects and related drain leakage current under [...] Read more.
In this paper, we report on an enhancement of mm-wave power performances with a vertically scaled AlN/GaN heterostructure. An AlGaN back barrier is introduced underneath a non-intentionally doped GaN channel layer, enabling the prevention of punch-through effects and related drain leakage current under a high electric field while using a moderate carbon concentration into the buffer. By carefully tuning the Al concentration into the back barrier layer, the optimized heterostructure offers a unique combination of electron confinement and low trapping effects up to high drain bias for a gate length as short as 100 nm. Consequently, pulsed (CW) Load-Pull measurements at 40 GHz revealed outstanding performances with a record power-added efficiency of 70% (66%) under high output power density at VDS = 20 V. These results demonstrate the interest of this approach for future millimeter-wave applications. Full article
Show Figures

Figure 1

6 pages, 3076 KiB  
Article
Low Buffer Trapping Effects above 1200 V in Normally off GaN-on-Silicon Field Effect Transistors
by Idriss Abid, Youssef Hamdaoui, Jash Mehta, Joff Derluyn and Farid Medjdoub
Micromachines 2022, 13(9), 1519; https://doi.org/10.3390/mi13091519 - 14 Sep 2022
Cited by 2 | Viewed by 2498
Abstract
We report on the fabrication and electrical characterization of AlGaN/GaN normally off transistors on silicon designed for high-voltage operation. The normally off configuration was achieved with a p-gallium nitride (p-GaN) cap layer below the gate, enabling a positive threshold voltage higher than +1 [...] Read more.
We report on the fabrication and electrical characterization of AlGaN/GaN normally off transistors on silicon designed for high-voltage operation. The normally off configuration was achieved with a p-gallium nitride (p-GaN) cap layer below the gate, enabling a positive threshold voltage higher than +1 V. The buffer structure was based on AlN/GaN superlattices (SLs), delivering a vertical breakdown voltage close to 1.5 kV with a low leakage current all the way to 1200 V. With the grounded substrate, the hard breakdown voltage transistors at VGS = 0 V is 1.45 kV, corresponding to an outstanding average vertical breakdown field higher than 2.4 MV/cm. High-voltage characterizations revealed a state-of-the-art combination of breakdown voltage at VGS = 0 V together with low buffer electron trapping effects up to 1.4 kV, as assessed by means of substrate ramp measurements. Full article
(This article belongs to the Special Issue III–V Compound Semiconductors and Devices)
Show Figures

Figure 1

9 pages, 3800 KiB  
Article
AlGaN Channel High Electron Mobility Transistors with Regrown Ohmic Contacts
by Idriss Abid, Jash Mehta, Yvon Cordier, Joff Derluyn, Stefan Degroote, Hideto Miyake and Farid Medjdoub
Electronics 2021, 10(6), 635; https://doi.org/10.3390/electronics10060635 - 10 Mar 2021
Cited by 40 | Viewed by 7105
Abstract
High power electronics using wide bandgap materials are maturing rapidly, and significant market growth is expected in a near future. Ultra wide bandgap materials, which have an even larger bandgap than GaN (3.4 eV), represent an attractive choice of materials to further push [...] Read more.
High power electronics using wide bandgap materials are maturing rapidly, and significant market growth is expected in a near future. Ultra wide bandgap materials, which have an even larger bandgap than GaN (3.4 eV), represent an attractive choice of materials to further push the performance limits of power devices. In this work, we report on the fabrication of AlN/AlGaN/AlN high-electron mobility transistors (HEMTs) using 50% Al-content on the AlGaN channel, which has a much wider bandgap than the commonly used GaN channel. The structure was grown by metalorganic chemical vapor deposition (MOCVD) on AlN/sapphire templates. A buffer breakdown field as high as 5.5 MV/cm was reported for short contact distances. Furthermore, transistors have been successfully fabricated on this heterostructure, with low leakage current and low on-resistance. A remarkable three-terminal breakdown voltage above 4 kV with an off-state leakage current below 1 μA/mm was achieved. A regrown ohmic contact was used to reduce the source/drain ohmic contact resistance, yielding a drain current density of about 0.1 A/mm. Full article
(This article belongs to the Special Issue Advances in Ultra-Wide Bandgap Devices)
Show Figures

Figure 1

3 pages, 192 KiB  
Editorial
Editorial for the Special Issue on Wide Bandgap Based Devices: Design, Fabrication and Applications
by Farid Medjdoub
Micromachines 2021, 12(1), 83; https://doi.org/10.3390/mi12010083 - 15 Jan 2021
Viewed by 1982
Abstract
Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era [...] Full article
(This article belongs to the Special Issue Wide Bandgap Based Devices: Design, Fabrication and Applications)
12 pages, 2221 KiB  
Article
Excitation Intensity and Temperature-Dependent Performance of InGaN/GaN Multiple Quantum Wells Photodetectors
by Alessandro Caria, Carlo De Santi, Ezgi Dogmus, Farid Medjdoub, Enrico Zanoni, Gaudenzio Meneghesso and Matteo Meneghini
Electronics 2020, 9(11), 1840; https://doi.org/10.3390/electronics9111840 - 3 Nov 2020
Cited by 16 | Viewed by 2984
Abstract
In this article, we investigate the behavior of InGaN–GaN Multiple Quantum Well (MQW) photodetectors under different excitation density (616 µW/cm2 to 7.02 W/cm2) and temperature conditions (from 25 °C to 65 °C), relating the experimental results to carrier recombination/escape dynamics. [...] Read more.
In this article, we investigate the behavior of InGaN–GaN Multiple Quantum Well (MQW) photodetectors under different excitation density (616 µW/cm2 to 7.02 W/cm2) and temperature conditions (from 25 °C to 65 °C), relating the experimental results to carrier recombination/escape dynamics. We analyzed the optical-to-electrical power conversion efficiency of the devices as a function of excitation intensity and temperature, demonstrating that: (a) at low excitation densities, there is a lowering in the optical-to-electrical conversion efficiency and in the short-circuit current with increasing temperature; (b) the same quantities increase with increasing temperature when using high excitation power. Moreover, (c) we observed an increase in the signal of photocurrent measurements at sub-bandgap excitation wavelengths with increasing temperature. The observed behavior is explained by considering the interplay between Shockley–Read–Hall (SRH) recombination and carrier escape. The first mechanism is relevant at low excitation densities and increases with temperature, thus lowering the efficiency; the latter is important at high excitation densities, when the effective barrier height is reduced. We developed a model for reproducing the variation of JSC with temperature; through this model, we calculated the effective barrier height for carrier escape, and demonstrated a lowering of this barrier with increasing temperature, that can explain the increase in short-circuit current at high excitation densities. In addition, we extracted the energy position of the defects responsible for SRH recombination, which are located 0.33 eV far from midgap. Full article
(This article belongs to the Special Issue Nitride Semiconductors Revolution: Material, Devices and Applications)
Show Figures

Figure 1

12 pages, 8863 KiB  
Article
High Breakdown Voltage and Low Buffer Trapping in Superlattice GaN-on-Silicon Heterostructures for High Voltage Applications
by Alaleh Tajalli, Matteo Meneghini, Sven Besendörfer, Riad Kabouche, Idriss Abid, Roland Püsche, Joff Derluyn, Stefan Degroote, Marianne Germain, Elke Meissner, Enrico Zanoni, Farid Medjdoub and Gaudenzio Meneghesso
Materials 2020, 13(19), 4271; https://doi.org/10.3390/ma13194271 - 25 Sep 2020
Cited by 17 | Viewed by 4117
Abstract
The aim of this work is to demonstrate high breakdown voltage and low buffer trapping in superlattice GaN-on-Silicon heterostructures for high voltage applications. To this aim, we compared two structures, one based on a step-graded (SG) buffer (reference structure), and another based on [...] Read more.
The aim of this work is to demonstrate high breakdown voltage and low buffer trapping in superlattice GaN-on-Silicon heterostructures for high voltage applications. To this aim, we compared two structures, one based on a step-graded (SG) buffer (reference structure), and another based on a superlattice (SL). In particular, we show that: (i) the use of an SL allows us to push the vertical breakdown voltage above 1500 V on a 5 µm stack, with a simultaneous decrease in vertical leakage current, as compared to the reference GaN-based epi-structure using a thicker buffer thickness. This is ascribed to the better strain relaxation, as confirmed by X-Ray Diffraction data, and to a lower clustering of dislocations, as confirmed by Defect Selective Etching and Cathodoluminescence mappings. (ii) SL-based samples have significantly lower buffer trapping, as confirmed by substrate ramp measurements. (iii) Backgating transient analysis indicated that traps are located below the two-dimensional electron gas, and are related to CN defects. (iv) The signature of these traps is significantly reduced on devices with SL. This can be explained by the lower vertical leakage (filling of acceptors via electron injection) or by the slightly lower incorporation of C in the SL buffer, due to the slower growth process. SL-based buffers therefore represent a viable solution for the fabrication of high voltage GaN transistors on silicon substrate, and for the simultaneous reduction of trapping processes. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

9 pages, 3035 KiB  
Article
Vertical Leakage in GaN-on-Si Stacks Investigated by a Buffer Decomposition Experiment
by Alaleh Tajalli, Matteo Borga, Matteo Meneghini, Carlo De Santi, Davide Benazzi, Sven Besendörfer, Roland Püsche, Joff Derluyn, Stefan Degroote, Marianne Germain, Riad Kabouche, Idriss Abid, Elke Meissner, Enrico Zanoni, Farid Medjdoub and Gaudenzio Meneghesso
Micromachines 2020, 11(1), 101; https://doi.org/10.3390/mi11010101 - 17 Jan 2020
Cited by 4 | Viewed by 6979
Abstract
We investigated the origin of vertical leakage and breakdown in GaN-on-Si epitaxial structures. In order to understand the role of the nucleation layer, AlGaN buffer, and C-doped GaN, we designed a sequential growth experiment. Specifically, we analyzed three different structures grown on silicon [...] Read more.
We investigated the origin of vertical leakage and breakdown in GaN-on-Si epitaxial structures. In order to understand the role of the nucleation layer, AlGaN buffer, and C-doped GaN, we designed a sequential growth experiment. Specifically, we analyzed three different structures grown on silicon substrates: AlN/Si, AlGaN/AlN/Si, C:GaN/AlGaN/AlN/Si. The results demonstrate that: (i) the AlN layer grown on silicon has a breakdown field of 3.25 MV/cm, which further decreases with temperature. This value is much lower than that of highly-crystalline AlN, and the difference can be ascribed to the high density of vertical leakage paths like V-pits or threading dislocations. (ii) the AlN/Si structures show negative charge trapping, due to the injection of electrons from silicon to deep traps in AlN. (iii) adding AlGaN on top of AlN significantly reduces the defect density, thus resulting in a more uniform sample-to-sample leakage. (iv) a substantial increase in breakdown voltage is obtained only in the C:GaN/AlGaN/AlN/Si structure, that allows it to reach VBD > 800 V. (v) remarkably, during a vertical I–V sweep, the C:GaN/AlGaN/AlN/Si stack shows evidence for positive charge trapping. Holes from C:GaN are trapped at the GaN/AlGaN interface, thus bringing a positive charge storage in the buffer. For the first time, the results summarized in this paper clarify the contribution of each buffer layer to vertical leakage and breakdown. Full article
(This article belongs to the Special Issue Wide Bandgap Based Devices: Design, Fabrication and Applications)
Show Figures

Figure 1

8 pages, 7206 KiB  
Article
High Lateral Breakdown Voltage in Thin Channel AlGaN/GaN High Electron Mobility Transistors on AlN/Sapphire Templates
by Idriss Abid, Riad Kabouche, Catherine Bougerol, Julien Pernot, Cedric Masante, Remi Comyn, Yvon Cordier and Farid Medjdoub
Micromachines 2019, 10(10), 690; https://doi.org/10.3390/mi10100690 - 12 Oct 2019
Cited by 33 | Viewed by 5247
Abstract
In this paper, we present the fabrication and Direct Current/high voltage characterizations of AlN-based thin and thick channel AlGaN/GaN heterostructures that are regrown by molecular beam epitaxy on AlN/sapphire. A very high lateral breakdown voltage above 10 kV was observed on the thin [...] Read more.
In this paper, we present the fabrication and Direct Current/high voltage characterizations of AlN-based thin and thick channel AlGaN/GaN heterostructures that are regrown by molecular beam epitaxy on AlN/sapphire. A very high lateral breakdown voltage above 10 kV was observed on the thin channel structure for large contact distances. Also, the buffer assessment revealed a remarkable breakdown field of 5 MV/cm for short contact distances, which is far beyond the theoretical limit of the GaN-based material system. The potential interest of the thin channel configuration in AlN-based high electron mobility transistors is confirmed by the much lower breakdown field that is obtained on the thick channel structure. Furthermore, fabricated transistors are fully functional on both structures with low leakage current, low on-resistance, and reduced temperature dependence as measured up to 300 °C. This is attributed to the ultra-wide bandgap AlN buffer, which is extremely promising for high power, high temperature future applications. Full article
(This article belongs to the Special Issue Wide Bandgap Based Devices: Design, Fabrication and Applications)
Show Figures

Figure 1

13 pages, 3813 KiB  
Article
GaN-Based Laser Wireless Power Transfer System
by Carlo De Santi, Matteo Meneghini, Alessandro Caria, Ezgi Dogmus, Malek Zegaoui, Farid Medjdoub, Boris Kalinic, Tiziana Cesca, Gaudenzio Meneghesso and Enrico Zanoni
Materials 2018, 11(1), 153; https://doi.org/10.3390/ma11010153 - 17 Jan 2018
Cited by 32 | Viewed by 6800
Abstract
The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the [...] Read more.
The aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes. By comparing the final demonstrator with a commercial RF-based Qi system, we conclude that the efficiency is still low at close range, but is promising in medium to long range applications. Efficiency may not be a limiting factor, since this concept can enable entirely new possibilities and designs, especially relevant for space applications. Full article
(This article belongs to the Special Issue Light Emitting Diodes and Laser Diodes: Materials and Devices)
Show Figures

Figure 1

5 pages, 867 KiB  
Article
InAlGaN/GaN HEMTs at Cryogenic Temperatures
by Ezgi Dogmus, Riad Kabouche, Sylvie Lepilliet, Astrid Linge, Malek Zegaoui, Hichem Ben-Ammar, Marie-Pierre Chauvat, Pierre Ruterana, Piero Gamarra, Cédric Lacam, Maurice Tordjman and Farid Medjdoub
Electronics 2016, 5(2), 31; https://doi.org/10.3390/electronics5020031 - 22 Jun 2016
Cited by 30 | Viewed by 8669
Abstract
We report on the electron transport properties of two-dimensional electron gas confined in a quaternary barrier InAlGaN/AlN/GaN heterostructure down to cryogenic temperatures for the first time. A state-of-the-art electron mobility of 7340 cm2·V−1·s−1 combined with a sheet carrier [...] Read more.
We report on the electron transport properties of two-dimensional electron gas confined in a quaternary barrier InAlGaN/AlN/GaN heterostructure down to cryogenic temperatures for the first time. A state-of-the-art electron mobility of 7340 cm2·V−1·s−1 combined with a sheet carrier density of 1.93 × 1013 cm−2 leading to a remarkably low sheet resistance of 44 Ω/□ are measured at 4 K. A strong improvement of Direct current (DC) and Radio frequency (RF) characteristics is observed at low temperatures. The excellent current and power gain cutoff frequencies (fT/fmax) of 65/180 GHz and 95/265 GHz at room temperature and 77 K, respectively, using a 0.12 μm technology confirmed the outstanding 2DEG properties. Full article
(This article belongs to the Special Issue Gallium Nitride Electronics)
Show Figures

Figure 1

5 pages, 1148 KiB  
Article
High Electron Confinement under High Electric Field in RF GaN-on-Silicon HEMTs
by Farid Medjdoub, Riad Kabouche, Ezgi Dogmus, Astrid Linge and Malek Zegaoui
Electronics 2016, 5(1), 12; https://doi.org/10.3390/electronics5010012 - 18 Mar 2016
Cited by 5 | Viewed by 6558
Abstract
We report on AlN/GaN high electron mobility transistors grown on silicon substrate with highly optimized electron confinement under a high electric field. The fabricated short devices (sub-10-nm barrier thickness with a gate length of 120 nm) using gate-to-drain distances below 2 µm deliver [...] Read more.
We report on AlN/GaN high electron mobility transistors grown on silicon substrate with highly optimized electron confinement under a high electric field. The fabricated short devices (sub-10-nm barrier thickness with a gate length of 120 nm) using gate-to-drain distances below 2 µm deliver a unique breakdown field close to 100 V/µm while offering high frequency performance. The low leakage current well below 1 µA/mm is achieved without using any gate dielectrics which typically degrade both the frequency performance and the device reliability. This achievement is mainly attributed to the optimization of material design and processing quality and paves the way for millimeter-wave devices operating at drain biases above 40 V, which would be only limited by the thermal dissipation. Full article
(This article belongs to the Special Issue Microwave/ Millimeter-Wave Devices and MMICs)
Show Figures

Graphical abstract

Back to TopTop