Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier
Abstract
1. Introduction
2. Device Technology
3. DC and RF Characterization
4. Large Signal Characterization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romanczyk, B.; Wienecke, S.; Guidry, M.; Li, H.; Ahmadi, E.; Zheng, X.; Keller, S.; Mishra, U.K. Demonstration of Constant 8 W/Mm Power Density at 10, 30, and 94 GHz in State-of-the-Art Millimeter-Wave N-Polar GaN MISHEMTs. IEEE Trans. Electron. Devices 2018, 65, 45–50. [Google Scholar] [CrossRef]
- Moon, J.S.; Wong, D.M.; Hu, P.; Hashimoto, M.; Antcliffe, C.; McGuire, M.M.; Willadson, P. 55% PAE and High Power Ka-Band GaN HEMTs Source Contact Ledge. EDL IEEE 2008, 29, 834–837. [Google Scholar] [CrossRef]
- Crespo, A.; Bellot, M.M.; Chabak, K.D.; Gillespie, J.K.; Jessen, G.H.; Miller, V.; Trejo, M.; Via, G.D.; Walker, D.E.; Winningham, B.W. High-Power Ka-Band Performance of AlInN/GaN. EDL IEEE 2010, 31, 8–10. [Google Scholar] [CrossRef]
- Moon, J.S.; Wu, S.; Wong, D.; Milosavljevic, I.; Conway, A.; Hashimoto, P.; Hu, M.; Antcliffe, M.; Micovic, M. Gate-Recessed AlGaN—GaN HEMTs for High-Performance Millimeter-Wave Applications. IEEE Electron. Device Lett. 2005, 26, 348–350. [Google Scholar] [CrossRef]
- Palacios, T.; Chakraborty, A.; Rajan, S.; Poblenz, C.; Keller, S.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. High-Power AlGaN/GaN HEMTs For. IEEE Electron. Device Lett. 2005, 26, 8–11. [Google Scholar] [CrossRef]
- Bouslama, M.; Gillet, V.; Chang, C.; Nallatamby, J.C.; Sommet, R.; Prigent, M.; Quere, R.; Lambert, B. Dynamic Performance and Characterization of Traps Using Different Measurements Techniques for the New AlGaN/GaN HEMT of 0.15- Μm Ultrashort Gate Length. IEEE Trans. Microw. Theory Tech. 2019, 67, 2475–2482. [Google Scholar] [CrossRef]
- Wu, Y.; Saxler, A.; Moore, M.; Smith, R.P.; Sheppard, S.; Chavarkar, P.M.; Wisleder, T.; Mishra, U.K.; Parikh, P. 30-W/mm GaN HEMTs by Field Plate Optimization. IEEE Electron. Device Lett. 2004, 25, 117–119. [Google Scholar] [CrossRef]
- Ambacher, O.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Schaff, W.J.; Eastman, L.F.; Dimitrov, R.; Wittmer, L. Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures. J. Appl. Phys. 1999, 85, 3222–3233. [Google Scholar] [CrossRef]
- Wu, Y.-F.; Moore, M.; Saxler, A.; Wisleder, T.; Parikh, P. 40-W/mm Double Field-Plated GaN HEMTs. 64th Device Res. Conf. Conf. Dig. DRC 2006, 151–152. [Google Scholar]
- Sun, Y.; Zhang, H.; Yang, L.; Hu, K.; Xing, Z.; Liang, K.; Yu, H.; Fang, S.; Kang, Y.; Wang, D.; et al. Correlation Between Electrical Performance and Gate Width of GaN-Based HEMTs. IEEE Electron. Device Lett. 2022, 1199, 1202. [Google Scholar] [CrossRef]
- Margomenos, A.; Kurdoghlian, A.; Micovic, M.; Shinohara, K.; Brown, D.F.; Corrion, A.L.; Moyer, H.P.; Burnham, S.; Regan, D.C.; Grabar, R.M. GaN Technology for E, W and G-Band Applications. IEEE Compd. Semicond. Integr. Circuit Symp. 2014, 1–4. [Google Scholar] [CrossRef]
- Schwantuschke, D.; Godejohann, B.J.; Brückner, P.; Tessmann, A.; Quay, R. mm-Wave Operation of AlN/GaN-Devices and MMICs at V- & W-Band. IEEE Int. Microw. Radar Conf. 2018, 238–241. [Google Scholar] [CrossRef]
- Kohn, E.; Medjdoub, F. InAlN—A New Barrier Material for GaN-Based HEMTs. In Proceedings of the International Workshop on The Physics of Semiconductor Devices, New Delhi, Indian, 17–20 December 2007; Volume 6, pp. 311–316. [Google Scholar] [CrossRef]
- Kabouche, R.; Derluyn, J.; Pusche, R.; Degroote, S.; Germain, M.; Pecheux, R.; Okada, E.; Zegaoui, M.; Medjdoub, F. Comparison of C-Doped AlN/GaN HEMTs and AlN/GaN/AlGaN Double Heterostructure for MmW Applications. In Proceedings of the 13th European Microwave Integrated Circuits Conference (EuMIC), Madrid, Spain, 23–25 September 2018; pp. 5–8. [Google Scholar] [CrossRef]
- Godejohann, B.J.; Ture, E.; Müller, S.; Prescher, M.; Kirste, L.; Aidam, R.; Polyakov, V.; Brückner, P.; Breuer, S.; Köhler, K. AlN/GaN HEMTs Grown by MBE and MOCVD: Impact of Al Distribution. Phys. Status Solidi Basic Res. 2017, 254, 3–7. [Google Scholar] [CrossRef]
- Dogmus, E.; Kabouche, R.; Linge, A.; Okada, E.; Zegaoui, M.; Medjdoub, F. High Power, High PAE Q-Band Sub-10 nm Barrier Thickness AlN/GaN HEMTs. Phys. Status Solidi Appl. Mater. Sci. 2017, 214, 797. [Google Scholar] [CrossRef]
- Shinohara, K.; Corrion, A.; Regan, D.; Milosavljevic, I.; Brown, D.; Burnham, S.; Willadsen, P.J.; Butler, C.; Schmitz, A.; Wheeler, D. 220GHz f T and 400GHz f Max in 40-nm GaN DH-HEMTs with Re-Grown Ohmic. Int. Electron. Devices Meet. 2010, 30.1.1–30.1.4. [Google Scholar] [CrossRef]
- Tang, Y.; Shinohara, K.; Regan, D.; Corrion, A.; Brown, D.; Wong, J.; Schmitz, A.; Fung, H.; Kim, S.; Micovic, M. Ultrahigh-Speed GaN High-Electron-Mobility Transistors with FT/Fmax of 454/444 GHz. IEEE Electron. Device Lett. 2015, 36, 549–551. [Google Scholar] [CrossRef]
- Cwiklinski, M.; Bruckner, P.; Leone, S.; Friesicke, C.; Lozar, R.; Mabler, H.; Quay, R.; Ambacher, O. 190-GHz G-Band GaN Amplifier MMICs with 40GHz of Bandwidth. IEEE MTT-S Int. Microw. Symp. Dig. 2019, 2019, 1257–1260. [Google Scholar] [CrossRef]
- Medjdoub, F.; Zegaoui, M.; Linge, A.; Grimbert, B.; Silvestri, R.; Meneghini, M.; Meneghesso, G.; Zanoni, E. High PAE High Reliability AlN/GaN Double Heterostructure. Solid State Electron. 2015, 113, 49–53. [Google Scholar] [CrossRef]
- Medjdoub, F.; Zegaoui, M.; Rolland, N. Beyond 100GHz AlN/GaN HEMTs on Silicon Substrate. Electron. Lett. 2011, 47, 1345–1346. [Google Scholar] [CrossRef]
- Angelotti, A.M.; Gibiino, G.P.; Santarelli, A.; Corrado, F. Experimental Characterization of Charge Trapping Dynamics in 100-nm AlN/GaN/AlGaN-on-Si HEMTs by Wideband Transient Measurements. IEEE Transac. Electron. Devices 2020, 67, 3069–3074. [Google Scholar] [CrossRef]
- Harrouche, K.; Kabouche, R.; Okada, E.; Medjdoub, F. High Performance and Highly Robust AlN/GaN HEMTs for Millimeter-Wave Operation. IEEE J. Electron. Devices Soc. 2019, 7, 314. [Google Scholar] [CrossRef]
- Gao, Z.H.; Meneghini, M.; Harrouche, K.; Kabouche, R.; Chiocchetta, F.; Okada, E.; Rampazzo, F.; De Santi, C.; Medjdoub, F.; Meneghesso, G. Short Term Reliability and Robustness of Ultra-Thin Barrier, 110 nm-Gate AlN/GaN HEMTs. Microelectron. Reliab. 2021, 123, 114199. [Google Scholar] [CrossRef]
- Harrouche, K.; Kabouche, R.; Okada, E.; Medjdoub, F. High Power AlN/GaN HEMTs with Record Power-Added-Efficiency >70% at 40 GHz. In Proceedings of the IEEE MTT-S International Microwave Symposium (IMS), Los Angeles, CA, USA, 4–6 August 2020. [Google Scholar]
- Shinohara, K.D.; Regan, I.; Milosavljevic, A.; Corrion, L.D.; Brown, F.P.; Willadsen, J.C.; Butler, A.; Schmitz, S.; Kim, V.; Lee, A.; et al. Electron Velocity Enhancement in Laterally Scaled GaN DH-HEMTs With fT of 260 GHz. IEEE Electron. Device Lett. 2011, 32, 1074–1076. [Google Scholar] [CrossRef]
- Micovic, M.; Hashimoto, P.; Hu, M.; Milosavljevic, I.; Duvall, J.; Peter, J.; Willadsen, W.-S.; Wong, A.; Conway, M.; Kurdoghlian, A.; et al. GaN Double Heterojunction Field Effect Transistor For Microwave and Millimeterwave Power Applications. In Proceedings of the IEEE International Electron Devices Meeting, San Francisco, CA, USA, 13–15 December 2004; pp. 807–810. [Google Scholar] [CrossRef]
- Moon, J.S.; Grabar, R.; Wong, J.; Antcliffe, M.; Chen, P.; Arkun, E.; Khalaf, I.; Corrion, A.; Chappell, J. High-speed Graded-channel AlGaN GaN HEMTs with Power Added Efficiency 70% at 30 GHz. Electron. Lett. 2020, 56, 678–680. [Google Scholar] [CrossRef]
- Moon, J.; Wong, J.; Grabar, B.; Antcliffe, M.; Chen, P.; Arkun, E.; Khalaf, I.; Corrion, A. High-Speed Linear GaN Technology with a Record Efficiency in Ka-Band. In Proceedings of the EUMW Conference, Paris, France, 30 September–4 October 2019. [Google Scholar]
- Romanczyk, B.; Guidry, M.; Zheng, X.; Shrestha, P.; Li, H.; Ahmadi, E.; Keller, S.; Mishra, U.K. Evaluation of Linearity at 30 GHz for N-Polar GaN Deep Recess Transistors with 10.3 W/Mm of Output Power and 47.4% PAE. Appl. Phys. Lett. 2021, 119, 587. [Google Scholar] [CrossRef]
- Liu, W.; Romanczyk, B.; Guidry, M.; Hatui, N.; Wurm, C.; Li, W.; Shrestha, P.; Zheng, X.; Keller, S.; Mishra, U.K. 6.2 W/Mm and Record 33.8% PAE at 94 GHz from N-Polar GaN Deep Recess MIS-HEMTs with ALD Ru Gates. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 748–751. [Google Scholar] [CrossRef]
- Wienecke, S.; Romanczyk, B.; Guidry, M.; Li, H.; Ahmadi, E.; Hestroffer, K.; Zheng, X.; Keller, S.; Mishra, U.K. N-Polar GaN Cap MISHEMT With Record Power Density Exceeding 6.5 W/mm at 94 GHz. IEEE Electron. Device Lett. 2017, 38, 359–362. [Google Scholar] [CrossRef]
- Harrouche, K.; Venkatachalam, S.; Grandpierron, F.; Okada, E.; Medjdoub, F. Impact of Undoped Channel Thickness and Carbon Concentration on AlN/GaN-on-SiC HEMT Performances. Appl. Phys. Express 2022, 15, 116504. [Google Scholar] [CrossRef]
- Medjdoub, F.; Ducatteau, D.; Zegaoui, M.; Grimbert, B.; Rolland, N.; Rolland, P.A. Trapping Effects Dependence on Electron Confinement in Ultrashort GaN-on-Si High-Electron-Mobility Transistors. Appl. Phys. Express 2012, 5, 5–7. [Google Scholar] [CrossRef]
- Kabouche, R.; Okada, E.; Dogmus, E.; Linge, A.; Zegaoui, M.; Medjdoub, F. Power Measurement Setup for On-Wafer Large Signal Characterization Up to Q-Band. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 419–421. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrouche, K.; Venkatachalam, S.; Ben-Hammou, L.; Grandpierron, F.; Okada, E.; Medjdoub, F. Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier. Micromachines 2023, 14, 291. https://doi.org/10.3390/mi14020291
Harrouche K, Venkatachalam S, Ben-Hammou L, Grandpierron F, Okada E, Medjdoub F. Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier. Micromachines. 2023; 14(2):291. https://doi.org/10.3390/mi14020291
Chicago/Turabian StyleHarrouche, Kathia, Srisaran Venkatachalam, Lyes Ben-Hammou, François Grandpierron, Etienne Okada, and Farid Medjdoub. 2023. "Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier" Micromachines 14, no. 2: 291. https://doi.org/10.3390/mi14020291
APA StyleHarrouche, K., Venkatachalam, S., Ben-Hammou, L., Grandpierron, F., Okada, E., & Medjdoub, F. (2023). Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier. Micromachines, 14(2), 291. https://doi.org/10.3390/mi14020291

