Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (1,212)

Search Parameters:
Authors = Cong Zhang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 40314 KiB  
Article
Efficient Uncertainty Quantification for Satellite Antenna Pointing: A GSA-PEM Framework Integrating Multi-Source Disturbances
by Shiyu Tan, Ning Zhang, Yingyong Shen, Cong Wang and Jingbo Gao
Aerospace 2025, 12(8), 720; https://doi.org/10.3390/aerospace12080720 - 13 Aug 2025
Abstract
Space-borne antenna pointing is affected by uncertain disturbances like satellite attitude, structural flexibility, and manufacturing/installation errors. Understanding the effect of these uncertainties is crucial for antenna performance. The main contribution of this paper is the proposal of an uncertainty quantification (UQ) framework for [...] Read more.
Space-borne antenna pointing is affected by uncertain disturbances like satellite attitude, structural flexibility, and manufacturing/installation errors. Understanding the effect of these uncertainties is crucial for antenna performance. The main contribution of this paper is the proposal of an uncertainty quantification (UQ) framework for antenna pointing performance that integrates the Global Sensitivity Analysis (GSA) method and Point Estimate Method (PEM), named the GSA-PEM Integrated Framework (GSA-PEM in short). This framework enables systematic analysis of how uncertain parameters (satellite attitude, manufacturing/installation errors, joint rotation, structural deformation, feed displacement, etc.) impact antenna pointing. It establishes a pointing model via coordinate transformation, utilizes the total-effect of the Sobol method to prioritize the key parameters for reliability analysis, and computes pointing performance statistics characteristic via PEM to evaluate pointing reliability. Two case studies are presented to validate the accuracy and efficiency of the proposed framework. Monte Carlo Simulation (MCS) and the Maximum Entropy method using the Fractional-order Moments (ME-FMs) are comparison methods. Results demonstrate that the proposed framework achieves a trade-off between accuracy and efficiency in assessing antenna pointing performance under parameter uncertainty. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

30 pages, 4173 KiB  
Review
Recent Advances in Nanomedicine: Cutting-Edge Research on Nano-PROTAC Delivery Systems for Cancer Therapy
by Xiaoqing Wu, Yueli Shu, Yao Zheng, Peichuan Zhang, Hanwen Cong, Yingpei Zou, Hao Cai and Zhengyu Zha
Pharmaceutics 2025, 17(8), 1037; https://doi.org/10.3390/pharmaceutics17081037 - 10 Aug 2025
Viewed by 359
Abstract
Proteolysis-targeting chimeras (PROTACs) selectively degrade target proteins by recruiting intracellular E3 ubiquitin ligases, overcoming the limitations of traditional small-molecule inhibitors that merely block protein function. This approach has garnered significant interest in precision cancer therapy. However, the clinical translation of PROTACs is hindered [...] Read more.
Proteolysis-targeting chimeras (PROTACs) selectively degrade target proteins by recruiting intracellular E3 ubiquitin ligases, overcoming the limitations of traditional small-molecule inhibitors that merely block protein function. This approach has garnered significant interest in precision cancer therapy. However, the clinical translation of PROTACs is hindered by their typically high molecular weight, poor membrane permeability, and suboptimal pharmacokinetic properties. Nanodrug delivery technologies represent a promising approach to overcome the limitations of PROTACs. By encapsulating, conjugating, or integrating PROTACs into functionalized nanocarriers, these systems can substantially enhance solubility and biostability, enable tumor-targeted and stimuli-responsive delivery, and thereby effectively alleviate the “hook effect” and minimize off-target toxicity. This review systematically outlines the primary design strategies for current nano-PROTAC delivery systems, including physical encapsulation, chemical conjugation, carrier-free self-assembly systems, and intelligent “split-and-mix” delivery platforms. We provide an overview and evaluation of recent advances in diverse nanomaterial carriers—such as lipid-based nanoparticles, polymeric nanoparticles, inorganic nanoparticles, biological carriers, and hybrid nanoparticles—highlighting their synergistic therapeutic potential for PROTACs delivery. The clinical translation prospects of these innovative systems are also discussed. This comprehensive analysis aims to deepen the understanding of this rapidly evolving field, address current challenges and opportunities, promote the advancement of nano-PROTACs, and offer insights into their future development. Full article
(This article belongs to the Special Issue Prodrug Strategies for Enhancing Drug Stability and Pharmacokinetics)
Show Figures

Figure 1

17 pages, 11835 KiB  
Article
Sampling-Based Next-Event Prediction for Wind-Turbine Maintenance Processes
by Huiling Li, Cong Liu, Qinjun Du, Qingtian Zeng, Jinglin Zhang, Georgios Theodoropoulo and Long Cheng
Energies 2025, 18(16), 4238; https://doi.org/10.3390/en18164238 - 9 Aug 2025
Viewed by 226
Abstract
Accurate and efficient next-event prediction in wind-turbine maintenance processes (WTMPs) is crucial for proactive resource planning and early fault detection. However, existing deep-learning-based prediction approaches often encounter performance challenges during the training phase, particularly when dealing with large-scale datasets. To address this challenge, [...] Read more.
Accurate and efficient next-event prediction in wind-turbine maintenance processes (WTMPs) is crucial for proactive resource planning and early fault detection. However, existing deep-learning-based prediction approaches often encounter performance challenges during the training phase, particularly when dealing with large-scale datasets. To address this challenge, this paper proposes a Sampling-based Next-event Prediction (SaNeP) approach for WTMPs. More specifically, a novel event log sampling technique is proposed to extract a representative sample from the original WTMP training log by quantifying the importance of individual traces. The trace prefixes of the sampled logs are then encoded using one-hot encoding and fed into six deep-learning models designed for next-event prediction. To demonstrate the effectiveness and applicability of the proposed approach, a real-life WTMP event log collected from the HuangYi wind farm in Hebei Province, China, is used to evaluate the prediction performance of various sampling techniques and ratios across six predictive models. Experimental results demonstrate that, at a 30% sampling ratio, SaNeP combined with the LSTM model achieves a 3.631-fold improvement in prediction efficiency and a 6.896% increase in prediction accuracy compared to other techniques. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

15 pages, 580 KiB  
Article
Effects of Dietary Tannic Acid and Tea Polyphenol Supplementation on Rumen Fermentation, Methane Emissions, Milk Protein Synthesis and Microbiota in Cows
by Rong Zhao, Jiajin Sun, Yitong Lin, Haichao Yan, Shiyue Zhang, Wenjie Huo, Lei Chen, Qiang Liu, Cong Wang and Gang Guo
Microorganisms 2025, 13(8), 1848; https://doi.org/10.3390/microorganisms13081848 - 7 Aug 2025
Viewed by 187
Abstract
To develop sustainable strategies for mitigating ruminal methanogenesis and improving nitrogen efficiency in dairy systems, this study investigated how low-dose tannic acid (T), tea polyphenols (TP), and their combination (T+TP; 50:50) modulate rumen microbiota and function. A sample of Holstein cows were given [...] Read more.
To develop sustainable strategies for mitigating ruminal methanogenesis and improving nitrogen efficiency in dairy systems, this study investigated how low-dose tannic acid (T), tea polyphenols (TP), and their combination (T+TP; 50:50) modulate rumen microbiota and function. A sample of Holstein cows were given four dietary treatments: (1) control (basal diet); (2) T (basal diet + 0.4% DM tannic acid); (3) TP (basal diet + 0.4% DM tea polyphenols); and (4) T+TP (basal diet + 0.2% DM tannic acid + 0.2% DM tea polyphenols). We comprehensively analyzed rumen fermentation, methane production, nutrient digestibility, milk parameters, and microbiota dynamics. Compared with the control group, all diets supplemented with additives significantly reduced enteric methane production (13.68% for T, 11.40% for TP, and 10.89% for T+TP) and significantly increased milk protein yield. The crude protein digestibility significantly increased in the T group versus control. The results did not impair rumen health or fiber digestion. Critically, microbiota analysis revealed treatment-specific modulation: the T group showed decreased Ruminococcus flavefaciens abundance, while all tannin treatments reduced abundances of Ruminococcus albus and total methanogens. These microbial shifts corresponded with functional outcomes—most notably, the T+TP synergy drove the largest reductions in rumen ammonia-N (34.5%) and milk urea nitrogen (21.1%). Supplementation at 0.4% DM, particularly the T+TP combination, effectively enhances nitrogen efficiency and milk protein synthesis while reducing methane emissions through targeted modulation of key rumen microbiota populations, suggesting potential sustainability benefits linked to altered rumen fermentation. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

12 pages, 5474 KiB  
Article
Flexible Sensor with Material–Microstructure Synergistic Optimization for Wearable Physiological Monitoring
by Yaojia Mou, Cong Wang, Xiaohu Jiang, Jingxiang Wang, Changchao Zhang, Linpeng Liu and Ji’an Duan
Materials 2025, 18(15), 3707; https://doi.org/10.3390/ma18153707 - 7 Aug 2025
Viewed by 489
Abstract
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection [...] Read more.
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection range, and poor signal stability under cyclic deformation remain unresolved. To overcome the aforementioned limitations, this work introduces a high-performance soft sensor featuring a dual-layered electrode system, comprising silver nanoparticles (AgNPs) and a composite of multi-walled carbon nanotubes (MWCNTs) with carbon black (CB), coupled with a laser-engraved crack-gradient microstructure. This structural strategy facilitates progressive crack formation under applied strain, thereby achieving enhanced sensitivity (1.56 kPa−1), broad operational bandwidth (50–600 Hz), fine frequency resolution (0.5 Hz), and a rapid signal response. The synergistic structure also improves signal repeatability, durability, and noise immunity. The sensor demonstrates strong applicability in health monitoring, motion tracking, and intelligent interfaces, offering a promising pathway for reliable, multifunctional sensing in wearable health monitoring, motion tracking, and soft robotic systems. Full article
(This article belongs to the Special Issue Advanced Materials for Flexible Sensing Applications and Electronics)
Show Figures

Figure 1

15 pages, 425 KiB  
Article
Game-Optimization Modeling of Shadow Carbon Pricing and Low-Carbon Transition in the Power Sector
by Guangzeng Sun, Bo Yuan, Han Zhang, Peng Xia, Cong Wu and Yichun Gong
Energies 2025, 18(15), 4173; https://doi.org/10.3390/en18154173 - 6 Aug 2025
Viewed by 316
Abstract
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. [...] Read more.
Under China’s ‘Dual Carbon’ strategy, the power sector plays a central role in achieving carbon neutrality. This study develops a bi-level game-optimization model involving the government, power producers, and technology suppliers to explore the dynamic coordination between shadow carbon pricing and emission trajectories. The upper-level model, guided by the government, focuses on minimizing total costs, including emission reduction costs, technological investments, and operational costs, by dynamically adjusting emission targets and shadow carbon prices. The lower-level model employs evolutionary game theory to simulate the adaptive behaviors and strategic interactions among power producers, regulatory authorities, and technology suppliers. Three representative uncertainty scenarios, disruptive technological breakthroughs, major policy interventions, and international geopolitical shifts, are incorporated to evaluate system robustness. Simulation results indicate that an optimistic scenario is characterized by rapid technological advancement and strong policy incentives. Conversely, under a pessimistic scenario with sluggish technology development and weak regulatory frameworks, there are substantially higher transition costs. This research uniquely contributes by explicitly modeling dynamic feedback between policy and stakeholder behavior under multiple uncertainties, highlighting the critical roles of innovation-driven strategies and proactive policy interventions in shaping effective, resilient, and cost-efficient carbon pricing and low-carbon transition pathways in the power sector. Full article
Show Figures

Figure 1

21 pages, 6621 KiB  
Article
Ecological Restoration Reshapes Ecosystem Service Interactions: A 30-Year Study from China’s Southern Red-Soil Critical Zone
by Gaigai Zhang, Lijun Yang, Jianjun Zhang, Chongjun Tang, Yuanyuan Li and Cong Wang
Forests 2025, 16(8), 1263; https://doi.org/10.3390/f16081263 - 2 Aug 2025
Viewed by 330
Abstract
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. [...] Read more.
Situated in the southern hilly-mountain belt of China’s “Three Zones and Four Belts Strategy”, Gannan region is a critical ecological shelter belt for the Ganjiang River. Decades of intensive mineral extraction and irrational agricultural development have rendered it into an ecologically fragile area. Consequently, multiple restoration initiatives have been implemented in the region over recent decades. However, it remains unclear how relationships among ecosystem services have evolved under these interventions and how future ecosystem management should be optimized based on these changes. Thus, in this study, we simulated and assessed the spatiotemporal dynamics of five key ESs in Gannan region from 1990 to 2020. Through integrated correlation, clustering, and redundancy analyses, we quantified ES interactions, tracked the evolution of ecosystem service bundles (ESBs), and identified their socio-ecological drivers. Despite a 31% decline in water yield, ecological restoration initiatives drove substantial improvements in key regulating services: carbon storage increased by 6.9 × 1012 gC while soil conservation rose by 4.8 × 108 t. Concurrently, regional habitat quality surged by 45% in mean scores, and food production increased by 2.1 × 105 t. Critically, synergistic relationships between habitat quality, soil retention, and carbon storage were progressively strengthened, whereas trade-offs between food production and habitat quality intensified. Further analysis revealed that four distinct ESBs—the Agricultural Production Bundle (APB), Urban Development Bundle (UDB), Eco-Agriculture Transition Bundle (ETB), and Ecological Protection Bundle (EPB)—were shaped by slope, forest cover ratio, population density, and GDP. Notably, 38% of the ETB transformed into the EPB, with frequent spatial interactions observed between the APB and UDB. These findings underscore that future ecological restoration and conservation efforts should implement coordinated, multi-service management mechanisms. Full article
Show Figures

Figure 1

14 pages, 2284 KiB  
Article
Rhizobacteria’s Effects on the Growth and Competitiveness of Solidago canadensis Under Nutrient Limitation
by Zhi-Yun Huang, Ying Li, Hu-Anhe Xiong, Misbah Naz, Meng-Ting Yan, Rui-Ke Zhang, Jun-Zhen Liu, Xi-Tong Ren, Guang-Qian Ren, Zhi-Cong Dai and Dao-Lin Du
Agriculture 2025, 15(15), 1646; https://doi.org/10.3390/agriculture15151646 - 30 Jul 2025
Viewed by 234
Abstract
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere [...] Read more.
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere of the invasive weed Solidago canadensis. We assessed their nitrogen utilization capacity and indoleacetic acid (IAA) production capabilities to evaluate their ecological functions. Our three-stage experimental design encompassed strain promotion, nutrient stress, and competition phases. Bacillus sp. ScRB44 demonstrated robust IAA production and significantly improved the nitrogen utilization efficiency, significantly enhancing S. canadensis growth, especially under nutrient-poor conditions, and promoting a shift in biomass allocation toward the roots, thereby conferring a competitive advantage over native species. Conversely, Pseudomonas sp. ScRB22 exhibited limited functional activity and a negligible impact on plant performance. These findings underscore that the ecological impact of rhizosphere bacteria on invasive weeds is closely linked to their specific growth-promoting functions. By enhancing stress adaptation and optimizing resource allocation, certain microorganisms may facilitate the establishment of invasive weeds in adverse environments. This study highlights the significance of microbial functional traits in invasion ecology and suggests novel approaches for microbiome-based invasive weed management, with potential applications in agricultural soil health improvement and ecological restoration. Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
Show Figures

Figure 1

18 pages, 6852 KiB  
Article
A Novel Anti-BoNT/A Neutralizing Antibody Possessed Overlapped Epitope with SV2 and Had Prolonged Half-Life In Vivo
by Shangde Peng, Naijing Hu, Fenghao Peng, Huirong Mu, Zihan Yi, Cong Xing, Liang Zhang, Wen Hu, Xinyi Zhou, Yan Wen, Jiannan Feng and Chunxia Qiao
Toxins 2025, 17(8), 376; https://doi.org/10.3390/toxins17080376 - 29 Jul 2025
Viewed by 397
Abstract
The C-terminus of the BoNT/A heavy chain (BoNT/AHC) mediates binding to its receptor, SV2, a critical step for toxicity. Antibody inhibition of this interaction enhances neuronal survival. We previously identified a functional anti-BoNT/AHC nanobody, HM. To extend its in vivo half-life, we designed [...] Read more.
The C-terminus of the BoNT/A heavy chain (BoNT/AHC) mediates binding to its receptor, SV2, a critical step for toxicity. Antibody inhibition of this interaction enhances neuronal survival. We previously identified a functional anti-BoNT/AHC nanobody, HM. To extend its in vivo half-life, we designed and prepared two Fc-optimized nanoparticles, HM-Fc5 and HM-Fc6. Structural modeling (homology/docking) of the HM Fv-AHC complex predicted that HM engages key AHC residues (Tyr1155, Phe1160, Ile1161, Val1184, Asn1188, Lys1189, Glu1190), which overlap with the SV2 binding site. This suggests HM’s protective mechanism involves blocking toxin-receptor binding and cellular entry. HM-Fc5 and HM-Fc6 retained the stability and function of the parental HM antibody while exhibiting prolonged in vivo half-life. These optimized nanobodies offer economical candidates potentially enabling longer dosing intervals, beneficial for prophylaxis or chronic disease treatment. Significance Statement: The purpose of the study is to design and prepare two Fc optimized nanoparticles, HM-Fc5 and HM-Fc6, and predict the key residues involved in the interaction between HMs and AHC. The experimental results showed that HM-Fc5 and HM-Fc6 have the same stability as the parent HM antibody but have a longer half-life in vivo. The key residues Tyr1155, Phe1160, Ile1161, Val1184, Asn1188, Lys1189, and Glu1190 overlap with the SV2 binding site. Our experimental results indicate that these nanobody candidates are not only more economical and convenient, but may also have longer dosing intervals, providing strong evidence and reference for prolonging the in vivo half-life of nanomaterials. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

16 pages, 6112 KiB  
Article
The Olfactory System of Dolichogenidea gelechiidivoris (Marsh) (Hymenoptera: Braconidae), a Natural Enemy of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)
by Shu-Yan Yan, He-Sen Yang, Cong Huang, Gui-Fen Zhang, Judit Arnó, Jana Collatz, Chuan-Ren Li, Fang-Hao Wan, Wan-Xue Liu and Yi-Bo Zhang
Int. J. Mol. Sci. 2025, 26(15), 7312; https://doi.org/10.3390/ijms26157312 - 29 Jul 2025
Viewed by 287
Abstract
The parasitoid wasp Dolichogenidea gelechiidivoris is a key koinobiont solitary endoparasitoid of the invasive agricultural pest Tuta absoluta. This study investigates both the morphological and molecular foundations of sex-specific olfactory differentiation in this species. Morphological analysis revealed that males possess significantly longer [...] Read more.
The parasitoid wasp Dolichogenidea gelechiidivoris is a key koinobiont solitary endoparasitoid of the invasive agricultural pest Tuta absoluta. This study investigates both the morphological and molecular foundations of sex-specific olfactory differentiation in this species. Morphological analysis revealed that males possess significantly longer antennae (2880.8 ± 20.36 μm) than females (2137.23 ± 43.47 μm), demonstrating pronounced sexual dimorphism. Scanning electron microscopy identified similar sensilla types on both sexes, but differences existed in the length and diameter of specific sensilla. Transcriptomic analysis of adult antennae uncovered molecular differentiation, identifying 11 odorant-binding proteins (OBPs) and 20 odorant receptors (ORs), with 27 chemosensory genes upregulated in females and 4 enriched in males. Integrating morphological and molecular evidence demonstrates complementary sexual specialization in the olfactory apparatus of D. gelechiidivoris. Linking these findings to the potential functions of different sensilla types, as discussed in the context of prior research, provides crucial insights into the sex-specific use of volatile cues. These findings provide critical insights into the use of volatile signals in this highly relevant species for biological control targeting T. absoluta. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 5646 KiB  
Article
Preparation and Characterization of D-Carvone-Doped Chitosan–Gelatin Bifunctional (Antioxidant and Antibacterial Properties) Film and Its Application in Xinjiang Ramen
by Cong Zhang, Kai Jiang, Yilin Lin, Rui Cui and Hong Wu
Foods 2025, 14(15), 2645; https://doi.org/10.3390/foods14152645 - 28 Jul 2025
Viewed by 392
Abstract
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films [...] Read more.
In this study, a composite film with dual antioxidant and antibacterial properties was prepared by combining 2% chitosan and 7% gelatin (2:1, w:w), with D-carvone (0–4%) as the primary active component. The effect of D-carvone content on the performance of the composite films was systematically investigated. The results showed that adding 1% D-carvone increased the water contact angle by 28%, increased the elongation at break by 35%, and decreased the WVTR by 18%. FTIR and SEM confirmed that ≤2% D-carvone uniformly bonded with the substrate through hydrogen bonds, and the film was dense and non-porous. In addition, the DPPH scavenging rate of the 1–2% D-carvone composite film increased to about 30–40%, and the ABTS+ scavenging rate increased to about 35–40%; the antibacterial effect on Escherichia coli and Staphylococcus aureus increased by more than 70%. However, when the addition amount was too high (exceeding 2%), the composite film became agglomerated, microporous, and phase-separated, affecting the film performance, and due to its own taste, it reduced the sensory quality of the noodles. Comprehensively, the composites showed better performance when the content of D-carvone was 1–2% and also the best effect for freshness preservation in Xinjiang ramen. This study provides a broad application prospect for natural terpene compound-based composite films in the field of high-moisture, multi-fat food preservation, and provides a theoretical basis and practical guidance for the development of efficient and safe food packaging materials. In the future, the composite film can be further optimized, and the effect of flavor can be further explored to meet the needs of different food preservation methods. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

13 pages, 1384 KiB  
Article
Molecular Epidemiology of Brucella spp. in Aborted Livestock in the Ningxia Hui Autonomous Region, China
by Cai Yin, Cong Yang, Yawen Wu, Jing Di, Taotao Bai, Yumei Wang, Yuling Zhang, Longlong Luo, Shuang Zhou, Long Ma, Xiaoliang Wang, Qiaoying Zeng and Zhixin Li
Vet. Sci. 2025, 12(8), 702; https://doi.org/10.3390/vetsci12080702 - 28 Jul 2025
Viewed by 328
Abstract
Brucellosis is caused by Brucella spp.; it can result in fetal loss and abortion, resulting in economic losses and negative effects on human health. Herein, a cross-sectional study on the epidemiology of Brucella spp. in aborted livestock in Ningxia from 2022 to 2023 [...] Read more.
Brucellosis is caused by Brucella spp.; it can result in fetal loss and abortion, resulting in economic losses and negative effects on human health. Herein, a cross-sectional study on the epidemiology of Brucella spp. in aborted livestock in Ningxia from 2022 to 2023 was conducted. A total of 749 aborted tissue samples from 215 cattle and 534 sheep were collected from farmers who reported abortions that were supported by veterinarians trained in biosecurity. The samples were analyzed using qPCR and were cultured for Brucella spp. when a positive result was obtained; the samples were speciated using AMOS-PCR. MLST and MLVA were employed for genotype identification. The results demonstrated that 8.68% of the samples were identified as being positive for Brucella spp. based on qPCR results. In total, 14 field strains of Brucella spp. were subsequently isolated, resulting in 11 B. melitensis, 2 B. abortus, and 1 B. suis. being identified via AMOS-PCR. Four sequence types were identified via MLST—ST7 and ST8 (B. melitensis), ST2 (B. abortus), and ST14 (B. suis)—with ST8 predominating. Five MLVA-8 genotypes and seven MLVA-11 genotypes were identified, with MLVA-11 GT116 predominating in livestock. Thus, at least three Brucella species are circulating in aborted livestock in Ningxia. This suggests a significant risk of transmission to other animals and humans. Therefore, disinfection and safe treatment procedures for aborted livestock and their products should be carried out to interrupt the transmission pathway; aborted livestock should be examined to determine zoonotic causes and targeted surveillance should be strengthened to improve the early detection of infectious causes, which will be of benefit to the breeding industry and public health security. Full article
Show Figures

Figure 1

13 pages, 1563 KiB  
Article
Activation of Peracetic Acid by Ozone for Recalcitrant Pollutant Degradation: Accelerated Kinetics, Byproduct Mitigation, and Microbial Inactivation
by Dihao Bai, Cong Liu, Siqing Zhang, Huiyu Dong, Lei Sun and Xiangjuan Yuan
Water 2025, 17(15), 2240; https://doi.org/10.3390/w17152240 - 28 Jul 2025
Viewed by 341
Abstract
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, [...] Read more.
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, transformation products, ecotoxicity, disinfection byproducts (DBPs), and microbial inactivation. The O3/PAA system synergistically activates PAA via O3 to generate hydroxyl radicals (OH) and organic radicals (CH3COO and CH3CO(O)O), achieving an IPM degradation rate constant of 0.10 min−1, which was significantly higher than individual O3 or PAA treatments. The degradation efficiency of IPM in the O3/PAA system exhibited a positive correlation with solution pH, achieving a maximum degradation rate constant of 0.23 min−1 under alkaline conditions (pH 9.0). Furthermore, the process demonstrated strong resistance to interference from coexisting anions, maintaining robust IPM removal efficiency in the presence of common aqueous matrix constituents. Furthermore, quenching experiments revealed OH dominated IPM degradation in O3/PAA system, while the direct oxidation by O3 and R-O played secondary roles. Additionally, based on transformation products (TPs) identification and ECOSAR predictions, the primary degradation pathways were elucidated and the potential ecotoxicity of TPs was systematically assessed. DBPs analysis after chlorination revealed that the O3/PAA (2.5:3) system achieved the lowest total DBPs concentration (99.88 μg/L), representing a 71.5% reduction compared to PAA alone. Amongst, dichloroacetamide (DCAM) dominated the DBPs profile, comprising > 60% of total species. Furthermore, the O3/PAA process achieved rapid 5–6 log reductions of E. coli. and S. aureus within 3 min. These results highlight the dual advantages of O3/PAA in effective disinfection and byproduct control, supporting its application in sustainable wastewater treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

24 pages, 10460 KiB  
Article
WGGLFA: Wavelet-Guided Global–Local Feature Aggregation Network for Facial Expression Recognition
by Kaile Dong, Xi Li, Cong Zhang, Zhenhua Xiao and Runpu Nie
Biomimetics 2025, 10(8), 495; https://doi.org/10.3390/biomimetics10080495 - 27 Jul 2025
Viewed by 391
Abstract
Facial expression plays an important role in human–computer interaction and affective computing. However, existing expression recognition methods cannot effectively capture multi-scale structural details contained in facial expressions, leading to a decline in recognition accuracy. Inspired by the multi-scale processing mechanism of the biological [...] Read more.
Facial expression plays an important role in human–computer interaction and affective computing. However, existing expression recognition methods cannot effectively capture multi-scale structural details contained in facial expressions, leading to a decline in recognition accuracy. Inspired by the multi-scale processing mechanism of the biological visual system, this paper proposes a wavelet-guided global–local feature aggregation network (WGGLFA) for facial expression recognition (FER). Our WGGLFA network consists of three main modules: the scale-aware expansion (SAE) module, which combines dilated convolution and wavelet transform to capture multi-scale contextual features; the structured local feature aggregation (SLFA) module based on facial keypoints to extract structured local features; and the expression-guided region refinement (ExGR) module, which enhances features from high-response expression areas to improve the collaborative modeling between local details and key expression regions. All three modules utilize the spatial frequency locality of the wavelet transform to achieve high-/low-frequency feature separation, thereby enhancing fine-grained expression representation under frequency domain guidance. Experimental results show that our WGGLFA achieves accuracies of 90.32%, 91.24%, and 71.90% on the RAF-DB, FERPlus, and FED-RO datasets, respectively, demonstrating that our WGGLFA is effective and has more capability of robustness and generalization than state-of-the-art (SOTA) expression recognition methods. Full article
Show Figures

Figure 1

21 pages, 2263 KiB  
Article
Elevational Patterns and Drivers of Soil Total, Microbial, and Enzymatic C:N:P Stoichiometry in Karst Peak-Cluster Depressions in Southwestern China
by Siyu Chen, Chaohao Xu, Cong Hu, Chaofang Zhong, Zhonghua Zhang and Gang Hu
Forests 2025, 16(8), 1216; https://doi.org/10.3390/f16081216 - 24 Jul 2025
Viewed by 324
Abstract
Elevational gradients in temperature, moisture, and vegetation strongly influence soil nutrient content and stoichiometry in mountainous regions. However, exactly how total, microbial, and enzymatic carbon (C), nitrogen (N), and phosphorus (P) stoichiometry vary with elevation in karst peak-cluster depressions remains poorly understood. To [...] Read more.
Elevational gradients in temperature, moisture, and vegetation strongly influence soil nutrient content and stoichiometry in mountainous regions. However, exactly how total, microbial, and enzymatic carbon (C), nitrogen (N), and phosphorus (P) stoichiometry vary with elevation in karst peak-cluster depressions remains poorly understood. To address this, we studied soil total, microbial, and enzymatic C:N:P stoichiometry in seasonal rainforests within karst peak-cluster depressions in southwestern China at different elevations (200, 300, 400, and 500 m asl) and depths (0–20 and 20–40 cm). We found that soil organic carbon (SOC), total nitrogen (TN), and the C:P and N:P ratios increased significantly with elevation, whereas total phosphorus (TP) decreased. Microbial phosphorus (MBP) also declined with elevation, while the microbial N:P ratio rose. Activities of nitrogen- (β-N-acetylglucosaminidase and L-leucine aminopeptidase combined) and phosphorus-related enzymes (alkaline phosphatase) increased markedly with elevation, suggesting potential phosphorus limitation for plant growth at higher elevations. Our results suggest that total, microbial, and enzymatic soil stoichiometry are collectively shaped by topography and soil physicochemical properties, with elevation, pH, and exchangeable calcium (ECa) acting as the key drivers. Microbial stoichiometry exhibited positive interactions with soil stoichiometry, while enzymatic stoichiometry did not fully conform to the expectations of resource allocation theory, likely due to the functional specificity of phosphatase. Overall, these findings enhance our understanding of C–N–P biogeochemical coupling in karst ecosystems, highlight potential nutrient limitations, and provide a scientific basis for sustainable forest management in tropical karst regions. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

Back to TopTop