Effects of Dietary Tannic Acid and Tea Polyphenol Supplementation on Rumen Fermentation, Methane Emissions, Milk Protein Synthesis and Microbiota in Cows
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Feeding Management
2.2. Milk Yield Recording and Milk Sample Collection
2.3. Sample Collection of Blood, Ruminal Fluid, and Feces
2.4. Methane Gas Collection
2.5. Analysis of Rumen Fermentation Characteristics and Serum Indexes
2.6. Milk Yield Recording and DHI Analysis
2.7. Analysis of Apparent Digestibility
2.8. Microbial DNA Extraction and Quantification
2.9. Statistical Analysis
3. Results
3.1. Effect of Tannic Acid and Tea Polyphenol Dietary Supplementation on Rumen Fermentation in Dairy Cows
3.2. Effect of Tannic Acid and Tea Polyphenol Dietary Supplementation on Nutrient Apparent Digestibility of Dairy Cows
3.3. Effect of Tannic Acid and Tea Polyphenol Dietary Supplementation on Blood Indicators in Dairy Cows
3.4. Effect of Tannic Acid and Tea Polyphenol Dietary Supplementation on Ruminal Microbial Structure in Dairy Cows
3.5. Effects of Tannic Acid and Tea Polyphenol Dietary Supplementation on Milk Yield and Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2019 (No. EPA-430-R-21-005); United States Environmental Protection Agency: Washington, DC, USA, 2021.
- Rotz, A.; Stout, R.; Leytem, A.; Feyereisen, G.; Waldrip, H.; Thoma, G.; Holly, M.; Bjorneberg, D.; Baker, J.; Vadas, P. Environmental assessment of United States dairy farms. J. Clean. Prod. 2021, 315, 128153. [Google Scholar] [CrossRef]
- Pereira, A.M.; de Lurdes Nunes Enes Dapkevicius, M.M.; Borba, A.E.S. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: Which microorganisms are involved in lowering methane emission? Anim. Microbiome 2022, 4, 5. [Google Scholar] [CrossRef]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef] [PubMed]
- Hristov, A.N.; Oh, J.; Giallongo, F.; Frederick, T.W.; Harper, M.T.; Weeks, H.L.; Branco, A.F.; Moate, P.J. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proc. Natl. Acad. Sci. USA 2015, 112, 10663–10668. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, I.; Wallace, R.J.; Moraïs, S. The rumen microbiome: Balancing food security and environmental impacts. Nat. Rev. Microbiol. 2021, 19, 553–566. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, I.; Jami, E. Review: The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal 2018, 12, s220–s232. [Google Scholar] [CrossRef]
- Bagheri, V.M.; Klevenhusen, F.; Zebeli, Q.; Petri, R. Scrophularia striata Extract Supports Rumen Fermentation and Improves Microbial Diversity in vitro Compared to Monensin. Front. Microbiol. 2018, 9, 2164. [Google Scholar] [CrossRef]
- Eom, J.S.; Lee, S.J.; Lee, Y.; Kim, H.S.; Choi, Y.Y.; Kim, H.S.; Kim, D.H.; Lee, S.S. Effects of supplementation levels of Allium fistulosum L. extract on in vitro ruminal fermentation characteristics and methane emission. PeerJ 2020, 8, e9651. [Google Scholar] [CrossRef]
- Jayanegara, A.; Yogianto, Y.; Wina, E.; Sudarman, A.; Kondo, M.; Obitsu, T.; Kreuzer, M. Combination Effects of Plant Extracts Rich in Tannins and Saponins as Feed Additives for Mitigating in Vitro Ruminal Methane and Ammonia Formation. Animals 2020, 10, 1531. [Google Scholar] [CrossRef]
- Ramos, M.E.; Rossi, G.; Cattin, M.; Jones, E.; Braganca, R.; Newbold, C.J. The effect of an isoflavonid-rich liquorice extract on fermentation, methanogenesis and the microbiome in the rumen simulation technique. FEMS Microbiol. Ecol. 2018, 94, fiy009. [Google Scholar] [CrossRef]
- Ruchita, K.; Tassilo, B.; Ilma, T.; Ali-Reza, B. Effect of a garlic and citrus extract supplement on performance, rumen fermentation, methane production, and rumen microbiome of dairy cows. J. Dairy Sci. 2023, 106, 608–4621. [Google Scholar] [CrossRef]
- Aboagye, I.A.; Beauchemin, K.A. Potential of Molecular Weight and Structure of Tannins to Reduce Methane Emissions from Ruminants: A Review. Animals 2019, 9, 856. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Wu, J.; Xia, L.; Liu, L.S.; Casper, D.P.; Wang, C.; Zhang, L.; Wei, S. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J. Dairy Sci. 2020, 103, 2303–2314. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Bao, X.Y.; Guo, G.; Huo, W.J.; Xu, Q.; Wang, C. Effects of Hydrolysable Tannin with or without Condensed Tannin on Alfalfa Silage Fermentation Characteristics and In Vitro Ruminal Methane Production, Fermentation Patterns, and Microbiota. Animals 2021, 11, 1967. [Google Scholar] [CrossRef] [PubMed]
- Battelli, M.; Colombini, S.; Parma, P.; Galassi, G.; Crovetto, G.M.; Spanghero, M.; Pravettoni, D.; Zanzani, S.A.; Manfredi, M.T.; Rapetti, L. In vitro effects of different levels of quebracho and chestnut tannins on rumen methane production, fermentation parameters, and microbiota. Front. Vet. Sci. 2023, 10, 1178288. [Google Scholar] [CrossRef]
- Jayanegara, A.; Goel, G.; Makkar, H.; Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 2015, 209, 60–68. [Google Scholar] [CrossRef]
- Bhatta, R.; Uyeno, Y.; Tajima, K.; Takenaka, A.; Yabumoto, Y.; Nonaka, I.; Enishi, O.; Kurihara, M. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 2009, 92, 5512–5522. [Google Scholar] [CrossRef]
- Cipriano-Salazar, M.; Rojas-Hernández, S.; Olivares-Pérez, J.; Jiménez-Guillén, R.; Cruz-Lagunas, B.; Camacho-Díaz, L.M.; Ugbogu, A.E. Antibacterial activities of tannic acid against isolated ruminal bacteria from sheep. Microb. Pathog. 2018, 117, 255–258. [Google Scholar] [CrossRef]
- Aguerre, M.J.; Capozzolo, M.C.; Lencioni, P.; Cabral, C.; Wattiaux, M.A. Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows. J. Dairy Sci. 2016, 99, 4476–4486. [Google Scholar] [CrossRef]
- Carulla, J.E.; Kreuzer, M.; Andrea, M.; Hess, D.H. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 2005, 56, 961–970. [Google Scholar] [CrossRef]
- Lan, W.; Yang, C.L. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef] [PubMed]
- Grazziotin, R.C.B.; Halfen, J.; Rosa, F.; Schmitt, E.; Anderson, J.L.; Ballard, V.; Osorio, J.S. Altered rumen fermentation patterns in lactating dairy cows supplemented with phytochemicals improve milk production and efficiency. J. Dairy Sci. 2020, 103, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Luis, O.T.; Danny, G.F.; Mozart, A.F.; Luigi, F.L.C. Models of protein and amino acid requirements for cattle. Rev. Bras. Zootec. 2015, 44, 109–132. [Google Scholar] [CrossRef]
- Bekele, W.; Guinguina, A.; Zegeye, A.; Simachew, A.; Ramin, M. Contemporary Methods of Measuring and Estimating Methane Emission from Ruminants. Methane 2022, 1, 82–95. [Google Scholar] [CrossRef]
- Wilkinson, J.; Bors, C.; Burgis, F.; Lorke, A.; Bodmer, P. Measuring CO2 and CH4 with a portable gas analyzer: Closed-loop operation, optimization and assessment. PLoS ONE 2018, 13, e0193973. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Guo, G.; Shen, C.; Liu, Q.; Zhang, S.L.; Wang, C.; Chen, L.; Xu, Q.F.; Wang, Y.X.; Huo, W.J. Fermentation quality and in vitro digestibility of first and second cut alfalfa (Medicago sativa L.) silages harvested at three stages of maturity. Anim. Feed Sci. Technol. 2019, 257, 114274. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists Official Methods of Analysis; AOAC: Washington, DC, USA, 2019. [Google Scholar]
- Lévesque, B.; Beno, T.; Ayotte, P.; Tardif, R.; Ferron, L.; Gingras, S.; Schlouch, E.; Dewailly, E. Cancer risk associated with household exposure to chloroform. J. Toxicol. Environ. Health Part A 2002, 65, 489–502. [Google Scholar] [CrossRef]
- Wang, R.F.; Cao, W.W.; Cerniglia, C.E. PCR detection of Ruminococcus spp. in human and animal faecal samples. Mol. Cell Probes 1997, 11, 259–265. [Google Scholar] [CrossRef]
- Denman, S.E.; McSweeney, C.S. Developmentofa real-time PCR assay formonitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Mattei, V.; Murugesan, S.; Al Hashmi, M.; Mathew, R.; James, N.; Singh, P.; Kumar, M.; Lakshmanan, A.P.; Terranegra, A.; Al Khodor, S.; et al. Evaluation of Methods for the Extraction of Microbial DNA From Vaginal Swabs Used for Microbiome Studies. Front. Cell. Infect. Microbiol. 2019, 9, 197. [Google Scholar] [CrossRef]
- Benchaar, C.; McAllister, T.A.; Chouinard, P.Y. Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. J. Dairy Sci. 2008, 91, 4765–4777. [Google Scholar] [CrossRef]
- Dschaak, C.M.; Williams, C.M.; Holt, M.S.; Eun, J.S.; Young, A.J.; Min, B.R. Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk production of lactating dairy cows. J. Dairy Sci. 2011, 94, 2508–2519. [Google Scholar] [CrossRef] [PubMed]
- Menci, R.; Coppa, M.; Torrent, A.; Natalello, A.; Valenti, B.; Luciano, G.; Priolo, A.; Niderkorn, V. Effects of two tannin extracts at different doses in interaction with a green or dry forage substrate on in vitro rumen fermentation and biohydrogenation. Anim. Feed. Sci. Technol. 2021, 278, 114977. [Google Scholar] [CrossRef]
- Tian, G.Y.; Zhang, X.Z.; Hao, X.Y.; Zhang, J. Effects of Curcumin on Growth Performance, Ruminal Fermentation, Rumen Microbial Protein Synthesis, and Serum Antioxidant Capacity in Housed Growing Lambs. Animals 2023, 13, 1439. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wei, C.; Zhao, G.Y.; Xu, Z.W.; Lin, S.X. Effects of dietary supplementing tannic acid in the ration of beef cattle on rumen fermentation, methane emission, microbial flora and nutrient digestibility. J. Anim. Physiol. Anim. Nutr. 2017, 101, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Belanche, A.; Doreau, M.; Edwards, J.E.; Moorby, J.M.; Pinloche, E.; Newbold, C.J. Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J. Nutr. 2012, 142, 1684–1692. [Google Scholar] [CrossRef]
- Mcsweeney, C.S.; Palmer, B.; Mcneill, D.M. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Technol. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Koike, S.; Kobayashi, Y. Fibrolytic Rumen Bacteria: Their Ecology and Functions. Asian Australas. J. Anim. Sci. 2009, 40, 1141–1147. [Google Scholar] [CrossRef]
- Li, D.B.; Yu, Y.Q.; Wang, W.Y.; Zhang, M.; Li, H.L.; Xing, Y. Effects of Tannin and Polyetylene Glycol on Ruminal Microorganism Quantity and Nutrient Apparent Digestibility of Sheep and Goats. Chin. J. Anim. Nutr. 2015, 27, 3155–3162. Available online: https://api.semanticscholar.org/CorpusID:87057038 (accessed on 20 May 2025).
- Wang, L.J.; Zhang, J.J.; Li, Y. Effects of High Forage/Concentrate Diet on Volatile Fatty Acid Production and the Microorganisms Involved in VFA Production in Cow Rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Hassan, F.; Li, M.; Xie, H.; Peng, L.; Tang, Z.; Yang, C. Effect of Sodium Nitrate and Cysteamine on In Vitro Ruminal Fermentation, Amino Acid Metabolism and Microbiota in Buffalo. Microorganisms 2022, 10, 2038. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.M.A.; Martins, C.M.; Cavalcante, F.G.; Ramos, K.A.; Martins, S.C.S. Cross-feeding among soil bacterial populations: Selection and characterization of potential bio-inoculants. J. Agric. Sci. 2019, 11, 23. [Google Scholar] [CrossRef][Green Version]
- Ku-Vera, J.C.; Ocampo, J.; Valencia-Salazar, S.S.; Montoya-Flores, D.; Solorio-Sánchez, F.J. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef]
- Mezzomo, R.; Paulino, P.V.R.; Detmann, E.; Valadares Filho, S.C.; Paulino, M.F.; Monnerat, J.P.I.S.; Duarte, M.S.; Silva, L.H.P.; Moura, L.S. Influence of condensed tannin on intake, digestibility, and efficiency of protein utilization in beef steers fed high concentrate diet. Livest. Sci. 2011, 141, 1–11. [Google Scholar] [CrossRef]
- Ebert, P.J.; Bailey, E.A.; Shreck, A.L.; Jennings, J.S.; Cole, N.A. Effect of condensed tannin extract supplementation on growth performance, nitrogen balance, gas emissions, and energetic losses of beef steers. J. Anim. Sci. 2017, 95, 1345–1355. [Google Scholar] [CrossRef]
- Jayanegara, A.; Yaman, A.; Khotijah, L. Reduction of proteolysis of high protein silage from Moringa and Indigofera leaves by addition of tannin extract. Vet. World 2019, 12, 211–217. [Google Scholar] [CrossRef]
- Rodríguez, E.; María, E.; Guevara-Oquendo, V.H.; Sun, B. Recent progress in structural and nutritional characterization of faba legume and use as an environment probe with vibrational spectroscopy sourced by globar and synchrotron. Appl. Spectrosc. Rev. 2019, 55, 1–19. [Google Scholar] [CrossRef]
- Katongole, C.B.; Yan, T. Effect of Varying Dietary Crude Protein Level on Feed Intake, Nutrient Digestibility, Milk Production, and Nitrogen Use Efficiency by Lactating Holstein-Friesian Cows. Animals 2020, 10, 2439. [Google Scholar] [CrossRef]
- Broderick, G.A.; Clayton, M.K. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J. Dairy Sci. 1997, 80, 2964–2971. [Google Scholar] [CrossRef]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 2011, 96, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro-Vázquez, A.T.; Jiménez-Ferrer, G.; Alayon-Gamboa, J.A.; Chay-Canul, A.J.; Ayala-Burgos, A.J.; Aguilar-Pérez, C.F.; Ku-Vera, J.C. Effects of quebracho tannin extract on intake, digestibility, rumen fermentation, and methane production in crossbred heifers fed low-quality tropical grass. Trop. Anim. Health Prod. 2017, 50, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Hailemariam, S.; Zhao, S.; He, Y.; Wang, J. Urea transport and hydrolysis in the rumen: A review. Anim. Nutr. 2021, 7, 989–996. [Google Scholar] [CrossRef]
- Zhang, P.; Roque, B.; Romero, P. Red seaweed supplementation suppresses methanogenesis in the rumen, revealing potentially advantageous traits among hydrogenotrophic bacteria. BioRxiv 2024. [Google Scholar] [CrossRef]
- Stams, A.; Plugge, C. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 2009, 7, 568–577. [Google Scholar] [CrossRef]
- Liu, R.; Shen, Y.; Ma, H.; Li, Y.; Lambo, M.T.; Dai, B.; Shen, W.; Qu, Y.; Zhang, Y. Silibinin reduces in vitro methane production by regulating the rumen microbiome and metabolites. Front. Microbiol. 2023, 14, 1225643. [Google Scholar] [CrossRef]
- Prathap, P.; Chauhan, S.S.; Flavel, M.; Mitchell, S.; Cottrell, J.J.; Leury, B.J.; Dunshea, F.R. Effects of Sugarcane-Derived Polyphenol Supplementation on Methane Production and Rumen Microbial Diversity of Second-Cross Lambs. Animals 2024, 14, 905. [Google Scholar] [CrossRef]
Composition (%DM) | Nutritional Level | ||
---|---|---|---|
Oatgrass | 2.21 | NEL (MJ/Kg) | 6.47 |
1 Concentrate | 0.1 | CP (g/kg) | 17.07 |
Sugar beet granulate | 2.66 | CF (g/kg) | 6.89 |
Fat powders | 1.33 | NDF (g/kg) | 35.64 |
Soybean meal | 3.85 | ADF (g/kg) | 19.96 |
Whole cotton seed | 3.84 | Ca (g/kg) | 0.60 |
Alfalfa hay | 17.02 | P (g/kg) | 0.43 |
Corn flak | 23.02 | ||
Brewer’s grains | 2.45 | ||
Whole corn silage | 43.52 |
Target Species | Primer Sequence (5′) | GeneBank Accession No. | TE (°C) | Size (bp) |
---|---|---|---|---|
Total bacteria | F: CGGCAACGAGCGCAACCC R: CCATTGTAGCACGTGTGTAGCC | AY548787.1 | 60 | 147 |
Total anaerobic fungi | F: GAGGAAGTAAAAGTCGTAACAAGGTTTC R: CAAATTCACAAAGGGTAGGATGATT | GQ355327.1 | 57.5 | 120 |
Total protozoa | F: GCTTTCGWTGGTAGTGTATT R: CTTGCCCTCYAATCGTWCT | HM212038.1 | 59 | 234 |
Total methanogens | F: TTCGGTGGATCDCARAGRGC R: GBARGTCGWAWCCGTAGAATCC | GQ339873.1 | 60 | 160 |
R. albus | F: CCCTAAAAGCAGTCTTAGTTCG R: CCTCCTTGCGGTTAGAACA | CP002403.1 | 60 | 176 |
R. flavefaciens | F: ATTGTCCCAGTTCAGATTGC R: GGCGTCCTCATTGCTGTTAG | AB849343.1 | 60 | 173 |
B. fibrisolvens | F: ACCGCATAAGCGCACGGA R: CGGGTCCATCTTGTACCGATAAAT | HQ404372.1 | 61 | 65 |
F. succinogenes | F: GTTCGGAATTACTGGGCGTAAA R: CGCCTGCCCCTGAACTATC | AB275512.1 | 61 | 121 |
R. amylophilus | F: CTGGGGAGCTGCCTGAATG R: GCATCTGAATGCGACTGGTTG | MH708240.1 | 60 | 102 |
P. ruminicola | F: GAAAGTCGGATTAATGCTCTATGTTG R: CATCCTATAGCGGTAAACCTTTGG | LT975683.1 | 58.5 | 74 |
Items | C 1 | T | TP | T+TP | p-Values |
---|---|---|---|---|---|
pH | 5.79 ± 0.15 b | 6.12 ± 0.14 a | 6.22 ± 0.03 a | 6.30 ± 0.17 a | 0.001 |
NH3-N (mg/dL) | 13.16 ± 1.39 a | 10.09 ± 0.82 b | 10.09 ± 1.56 b | 8.62 ± 0.5 b | 0.001 |
MCP (g/L) | 0.65 ± 0.02 a | 0.45 ± 0.03 b | 0.44 ± 0.08 b | 0.35 ± 0.04 b | 0.003 |
Methane production (L) | 445.83 ± 3.14 a | 384.86 ± 13.7 b | 397.26 ± 16.53 b | 395.02 ± 7.18 b | 0.020 |
Acetate (A, mmol/L) | 65.99 ± 4.47 | 63.96 ± 3.08 | 60.51 ± 4.83 | 57.89 ± 7.44 | 0.196 |
Propionate (P, mmol/L) | 20.42 ± 0.89 c | 33.52 ± 3.05 a | 26.73 ± 3.89 b | 28.92 ± 3.33 ab | 0.008 |
Isobutyrate (mmol/L) | 0.63 ± 0.23 | 0.60 ± 0.07 | 0.56 ± 0.08 | 0.60 ± 0.08 | 0.804 |
Butyrate (mmol/L) | 10.92 ± 2.5 | 13.36 ± 2.7 | 13.37 ± 1.71 | 10.9 ± 0.84 | 0.110 |
Isovalerate (mmol/L) | 1.17 ± 0.51 | 1.35 ± 0.32 | 0.98 ± 0.14 | 1.08 ± 0.14 | 0.226 |
Valerate (mmol/L) | 1.75 ± 0.68 | 2.27 ± 0.85 | 2.12 ± 0.61 | 1.96 ± 0.28 | 0.709 |
TVFA (mmol/L) | 105.29 ± 15.14 | 115.07 ± 2.27 | 104.06 ± 7.00 | 100.89 ± 10.91 | 0.178 |
A/P | 2.80 ± 0.63 a | 1.92 ± 0.2 b | 2.37 ± 0.49 b | 2.09 ± 0.42 b | 0.100 |
Items | C 1 | T | TP | T+TP | p-Values |
---|---|---|---|---|---|
Dry matter (%) | 68.6 ± 1.67 | 70.6 ± 3.28 | 69.1 ± 2.45 | 69.0 ± 1.34 | 0.092 |
Organic matter (%) | 66.0 ± 2.80 | 68.1 ± 3.30 | 67.5 ± 2.64 | 67.1 ± 1.44 | 0.067 |
Crude protein (%) | 72.7 ± 3.46 b | 77.8 ± 3.07 a | 76.6 ± 1.92 ab | 75.5 ± 1.68 ab | 0.041 |
Ether extract (%) | 82.4 ± 4.40 | 82.1 ± 2.87 | 80.8 ± 2.57 | 79.2 ± 2.41 | 0.892 |
Neutral detergent fiber (%) | 56.1 ± 7.28 | 54.4 ± 5.42 | 51.8 ± 4.82 | 53.7 ± 5.53 | 0.079 |
Acid detergent fiber (%) | 46.3 ± 6.84 | 48.7 ± 4.43 | 46.3 ± 4.47 | 46.8 ± 4.37 | 0.220 |
Items | C 1 | T | TP | T+TP | p-Values |
---|---|---|---|---|---|
Triglycerides (mmol/L) | 1.37 ± 0.36 | 0.98 ± 0.58 | 1.06 ± 0.53 | 1.20 ± 0.32 | 0.837 |
Total cholesterol (mmol/L) | 3.93 ± 0.62 | 4.82 ± 0.02 | 5.07 ± 0.27 | 4.32 ± 1.10 | 0.194 |
Plasma urea nitrogen (mmol/L) | 6.93 ± 0.40 a | 5.83 ± 0.21 b | 5.11 ± 0.42 b | 5.10 ± 0.80 b | 0.028 |
Creatinine (μmol/L) | 118 ± 6.36 | 64.7 ± 2.77 | 77.7 ± 3.46 | 57.5 ± 1.68 | 0.251 |
Aspartate aminotransferase (U/L) | 22.9 ± 4.56 | 25.8 ± 3.62 | 16.4 ± 7.36 | 19.5 ± 8.83 | 0.611 |
Alanine aminotransferase (U/L) | 27.9 ± 2.28 | 22.9 ± 11.62 | 30.3 ± 9.45 | 24.1 ± 3.58 | 0.465 |
Albumin (g/L) | 45.2 ± 2.55 | 47.1 ± 5.72 | 48.4 ± 2.95 | 49.1 ± 8.56 | 0.072 |
Glutamylphthalide aminotransferase (U/L) | 33.9 ± 4.60 | 43.4 ± 0.72 | 34.9 ± 3.02 | 29.8 ± 1.54 | 0.560 |
Total protein (g/L) | 70.2 ± 2.76 | 73.4 ± 5.65 | 75.2 ± 1.84 | 74.1 ± 0.35 | 0.079 |
Globulin (g/L) | 25.0 ± 3.32 | 26.3 ± 6.98 | 27.3 ± 3.78 | 25.1 ± 1.98 | 0.134 |
Items | C 1 | T | TP | T+TP | p-Values |
---|---|---|---|---|---|
Milk yield (kg) | 38.6 ± 1.28 | 39.6 ± 5.56 | 39.4 ± 2.52 | 39.9 ± 3.56 | 0.157 |
FCM (kg/d) | 36.5 ± 1.27 | 38.0 ± 1.92 | 38.4 ± 2.14 | 37.7 ± 2.10 | 0.089 |
Milk protein production (kg) | 1.22 ± 0.05 | 1.29 ± 0.18 | 1.27 ± 0.09 | 1.29 ± 0.11 | 0.074 |
Milk fat (%) | 3.63 ± 0.07 | 3.72 ± 0.17 | 3.82 ± 0.30 | 3.63 ± 0.14 | 0.464 |
Milk protein (%) | 3.15 ± 0.03 b | 3.25 ± 0.02 a | 3.22 ± 0.05 a | 3.23 ± 0.02 a | 0.001 |
Lactose (%) | 5.19 ± 0.22 | 5.23 ± 0.17 | 5.17 ± 0.35 | 5.00 ± 0.26 | 0.673 |
Non-fat milk solids (%) | 9.62 ± 0.21 | 9.33 ± 0.29 | 9.53 ± 0.34 | 9.35 ± 0.35 | 0.437 |
Total solids (%) | 13.3 ± 0.27 | 13.1 ± 0.39 | 13.4 ± 0.63 | 13.0 ± 0.36 | 0.638 |
Urea nitrogen in the milk (mg/dL) | 12.8 ± 0.25 a | 10.4 ± 0.9 b | 10.7 ± 1.12 b | 10.1 ± 0.98 b | 0.022 |
Somatic cell count (104/mL) | 8.70 ± 10.02 | 8.41 ± 6.24 | 7.63 ± 3.79 | 7.82 ± 2.59 | 0.153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Sun, J.; Lin, Y.; Yan, H.; Zhang, S.; Huo, W.; Chen, L.; Liu, Q.; Wang, C.; Guo, G. Effects of Dietary Tannic Acid and Tea Polyphenol Supplementation on Rumen Fermentation, Methane Emissions, Milk Protein Synthesis and Microbiota in Cows. Microorganisms 2025, 13, 1848. https://doi.org/10.3390/microorganisms13081848
Zhao R, Sun J, Lin Y, Yan H, Zhang S, Huo W, Chen L, Liu Q, Wang C, Guo G. Effects of Dietary Tannic Acid and Tea Polyphenol Supplementation on Rumen Fermentation, Methane Emissions, Milk Protein Synthesis and Microbiota in Cows. Microorganisms. 2025; 13(8):1848. https://doi.org/10.3390/microorganisms13081848
Chicago/Turabian StyleZhao, Rong, Jiajin Sun, Yitong Lin, Haichao Yan, Shiyue Zhang, Wenjie Huo, Lei Chen, Qiang Liu, Cong Wang, and Gang Guo. 2025. "Effects of Dietary Tannic Acid and Tea Polyphenol Supplementation on Rumen Fermentation, Methane Emissions, Milk Protein Synthesis and Microbiota in Cows" Microorganisms 13, no. 8: 1848. https://doi.org/10.3390/microorganisms13081848
APA StyleZhao, R., Sun, J., Lin, Y., Yan, H., Zhang, S., Huo, W., Chen, L., Liu, Q., Wang, C., & Guo, G. (2025). Effects of Dietary Tannic Acid and Tea Polyphenol Supplementation on Rumen Fermentation, Methane Emissions, Milk Protein Synthesis and Microbiota in Cows. Microorganisms, 13(8), 1848. https://doi.org/10.3390/microorganisms13081848