Prevalence and Risk Assessment of Multiple Mycotoxins in Durum Wheat from Fields Under Different Agricultural Practices in Tunisia
Abstract
1. Introduction
2. Results and Discussion
2.1. Occurrence of Mycotoxins in Tunisian Durum Wheat
2.2. Distribution of Mycotoxins in Durum Wheat Under Varied Conditions in 2021 and 2022
2.3. Co-Occurence of Mycotoxins in Analyzed Durum Wheat
2.4. Risk Assessment
2.4.1. Dietary Exposure to Mycotoxins
2.4.2. Risk Characterization
Risk Characterization by the MOE Approach
Risk Characterization by the HQ Approach
3. Conclusions
4. Materials and Methods
4.1. Study Region and Sampling Procedures for Durum Wheat
4.2. Reagents and Standards
4.3. Extraction Procedure
4.4. Mycotoxin Analysis
4.5. Risk Assessment Determination
4.5.1. Dietary Exposure to Mycotoxins
4.5.2. Risk Characterization
Margin of Exposure (MOE) Determination
Hazard Quotient (HQ) Determination
4.6. Statistical Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grosse-Heilmann, M.; Cristiano, E.; Deidda, R.; Viola, F. Durum wheat productivity today and tomorrow: A review of influencing factors and climate change effects. Resour. Environ. Sustain. 2024, 17, 100170. [Google Scholar] [CrossRef]
- De Santis, M.A.; Soccio, M.; Laus, M.N.; Flagella, Z. Influence of drought and salt stress on durum wheat grain quality and composition: A review. Plants 2021, 10, 2599. [Google Scholar] [CrossRef]
- Saini, P.; Kaur, H.; Tyagi, V.; Saini, P.; Ahmed, N.; Dhaliwal, H.; Sheikh, I. Nutritional value and end-use quality of durum wheat. Cereal Res. Commun. 2023, 51, 283–294. [Google Scholar] [CrossRef]
- Sadok, W.; Schoppach, R.; Ghanem, M.E.; Zucca, C.; Sinclair, T.R. Wheat drought-tolerance to enhance food security in Tunisia, birthplace of the Arab Spring. Eur. J. Agron. 2019, 107, 1–9. [Google Scholar] [CrossRef]
- Ayed, S.; Bouhaouel, I.; Othmani, A. Screening of Durum Wheat Cultivars for Selenium Response Under Contrasting Environments, Based on Grain Yield and Quality Attributes. Plants 2022, 11, 1437. [Google Scholar] [CrossRef]
- Barry, N.Y.; Dia, K.; Ndoye, A.; Ly, R. Wheat Production Forecasts for Tunisia amid the Ukraine Crisis. Akad. Ukr. Crisis Brief Ser. 2023, 28. [Google Scholar] [CrossRef]
- Ben Hassouna, K.; Ben Salah-Abbes, J.; Chaieb, K.; Abbès, S. Mycotoxins occurrence in milk and cereals in North African countries—A review. Crit. Rev. Toxicol. 2022, 52, 619–635. [Google Scholar] [CrossRef] [PubMed]
- Esheli, M.; Thissera, B.; El-Seedi, H.R.; Rateb, M.E. Fungal Metabolites in Human Health and Diseases—An Overview. Encyclopedia 2022, 2, 1590–1601. [Google Scholar] [CrossRef]
- Sarmast, E.; Fallah, A.A.; Jafari, T.; Khaneghah, A.M. Occurrence and fate of mycotoxins in cereals and cereal-based products: A narrative review of systematic reviews and meta-analyses studies. Curr. Opin. Food Sci. 2021, 39, 68–75. [Google Scholar] [CrossRef]
- European Commission (EC). Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 558–577. [Google Scholar]
- Woo, S.Y.; Lee, S.Y.; Park, S.B.; Chun, H.S. Simultaneous determination of 17 regulated and non-regulated Fusarium mycotoxins co-occurring in foodstuffs by UPLC-MS/MS with solid-phase extraction. Food Chem. 2024, 438, 137624. [Google Scholar] [CrossRef] [PubMed]
- European Commission (EC). Commission recommendation (EU) 2022/553 of 5 April 2022 on monitoring the presence of Alternaria toxins in food. Off. J. Eur. Communities 2022, 107, 90. [Google Scholar]
- Gonçalves, C.; Tölgyesi, Á.; Bouten, K.; Cordeiro, F.; Stroka, J. Determination of Alternaria toxins in food by SPE and LC-IDMS: Development and in-house validation of a candidate method for standardisation. Separations 2022, 9, 70. [Google Scholar] [CrossRef]
- Hasuda, A.L.; Bracarense, A.P.F.R.L. Toxicity of the emerging mycotoxins beauvericin and enniatins: A mini-review. Toxicon 2024, 239, 107534. [Google Scholar] [CrossRef] [PubMed]
- Degraeve, S.; Madege, R.; Audenaert, K.; Kamala, A.; Ortiz, J.; Kimanya, M.; Tiisekwa, B.; De Meulenaer, B.; Haesaert, G. Impact of local pre-harvest management practices in maize on the occurrence of Fusarium species and associated mycotoxins in two agro-ecosystems in Tanzania. Food Control 2016, 59, 225–233. [Google Scholar] [CrossRef]
- Mielniczuk, E.; Skwaryło-Bednarz, B. Fusarium head blight, mycotoxins and strategies for their reduction. Agronomy 2020, 10, 509. [Google Scholar] [CrossRef]
- Herrera, M.; Cavero, J.; Franco-Luesma, S.; Álvaro-Fuentes, J.; Ariño, A.; Lorán, S. Mycotoxins and Crop Yield in Maize as Affected by Irrigation Management and Tillage Practices. Agronomy 2023, 13, 798. [Google Scholar] [CrossRef]
- Yuan, A.; Kumar, S.D.; Wang, H.; Wang, S.; Impa, S.; Wang, H.; Guo, J.; Wang, Y.; Yang, Q.; Liu, X.J.A. Dynamic interplay among soil nutrients, rhizosphere metabolites, and microbes shape drought and heat stress responses in summer maize. Soil. Biol. Biochem. 2024, 191, 109357. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Freitag, S.; Sulyok, M.; Reiter, E.; Lippl, M.; Mechtler, K.; Krska, R. Influence of regional and yearly weather patterns on multi-mycotoxin occurrence in Austrian wheat: A liquid chromatographic–tandem mass spectrometric and multivariate statistics approach. J. Sci. Food Agric. 2024, 104, 7788–7796. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajslova, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25. Crit. Rev. Food Sci. Nutr. 2019, 60, 2773–2789. [Google Scholar] [CrossRef]
- Khan, R. Mycotoxins in Food: Occurrence, Health Implications, and Control Strategies-A Comprehensive Review. Toxicon 2024, 248, 108038. [Google Scholar] [CrossRef] [PubMed]
- Niaz, W.; Iqbal, S.Z.; Ahmad, K.; Majid, A.; Haider, W.; Xianguo, L. Mycotoxins: A comprehensive review of its global trends in major cereals, advancements in chromatographic detections and future prospectives. Food Chem. X 2025, 27, 102350. [Google Scholar] [CrossRef] [PubMed]
- Siri-anusornsak, W.; Kolawole, O.; Mahakarnchanakul, W.; Greer, B.; Petchkongkaew, A.; Meneely, J.; Elliott, C.; Vangnai, K. The Occurrence and Co-Occurrence of Regulated, Emerging, and Masked Mycotoxins in Rice Bran and Maize from Southeast Asia. Toxins 2022, 14, 567. [Google Scholar] [CrossRef]
- Aloui, A.; Salah-Abbès, J.B.; Zinedine, A.; Meile, J.C.; Riba, A.; Durand, N.; Montet, D.; Abbès, S.; Brabet, C. Occurrence of pre- and postharvest multi-mycotoxins in durum wheat grains collected in 2020 and 2021 in two climatic regions of Tunisia. Food Addit. Contam. Part B 2023, 16, 274–287. [Google Scholar] [CrossRef]
- Ben Hassouna, K.; Hamed, A.M.; Salah-Abbès, J.B.; Chaieb, K.; Abbès, S.; García-Campaña, A.M.; Gámiz-Gracia, L. Mycotoxin Occurrence in Milk and Durum Wheat Samples from Tunisia Using Dispersive Liquid-Liquid Microextraction and Liquid Chromatography with Fluorescence Detection. Toxins 2023, 15, 633. [Google Scholar] [CrossRef]
- Juan, C.; Berrada, H.; Mañes, J.; Oueslati, S. Multi-mycotoxin determination in barley and derived products from Tunisia and estimation of their dietary intake. Food Chem. Toxicol. 2017, 103, 148–156. [Google Scholar] [CrossRef]
- Keskin, E.; Eyupoglu, O.E. Determination of mycotoxins by HPLC, LC-MS/MS and health risk assessment of the mycotoxins in bee products of Turkey. Food Chem. 2023, 400, 134086. [Google Scholar] [CrossRef] [PubMed]
- Pantano, L.; La Scala, L.; Olibrio, F.; Galluzzo, F.G.; Bongiorno, C.; Buscemi, M.D.; Macaluso, A.; Vella, A. QuEChERS LC-MS/MS Screening Method for Mycotoxin Detection in Cereal Products and Spices. Int. J. Environ. Res. Public Health 2021, 18, 3774. [Google Scholar] [CrossRef]
- Sadighara, P.; Basaran, B.; Afshar, A.; Nazmara, S. Optimization of clean-up in QuEChERS method for extraction of mycotoxins in food samples: A systematic review. Microchem. J. 2024, 197, 109711. [Google Scholar] [CrossRef]
- Tölgyesi, Á.; Cseh, A.; Simon, A.; Sharma, V.K. Development of a Novel LC-MS/MS Multi-Method for the Determination of Regulated and Emerging Food Contaminants Including Tenuazonic Acid, a Chromatographically Challenging Alternaria Toxin. Molecules 2023, 28, 1468. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Narváez, A.; Castaldo, L.; Gaspari, A.; Rodríguez-Carrasco, Y.; Grosso, M.; Ritieni, A. Multiclass and multi-residue screening of mycotoxins, pharmacologically active substances, and pesticides in infant milk formulas through ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry analysis. J. Dairy Sci. 2022, 105, 2948–2962. [Google Scholar] [CrossRef]
- European Commission (EC). Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, 119, 103–157. [Google Scholar]
- Riba, A.; Zebiri, S.; Mokrane, S.; Sabaou, N. Occurrence of toxigenic fungi, aflatoxins and ochratoxin A in wheat and dried fruits commercialized in Algeria. In Proceedings of the International Congress of Mycotoxins and Cancer, Marrakech, Morocco, 24–25 March 2016. [Google Scholar]
- Hathout, A.S.; Abel-Fattah, S.M.; Abou-Sree, Y.H.; Fouzy, A.S. Incidence and exposure assessment of aflatoxins and ochratoxin A in Egyptian wheat. Toxicol. Rep. 2020, 7, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Houissa, H.; Lasram, S.; Sulyok, M.; Šarkanj, B.; Fontana, A.; Strub, C.; Krska, R.; Schorr-Galindo, S.; Ghorbel, A. Multimycotoxin LC-MS/MS analysis in pearl millet (Pennisetum glaucum) from Tunisia. Food Control 2019, 106, 106738. [Google Scholar] [CrossRef]
- Jedidi, I.; Cruz, A.; Gonzalez-Jaen, M.T.; Said, S. Aflatoxins and ochratoxin A and their Aspergillus causal species in Tunisian cereals. Food Addit. Contam. Part B Surveill. 2017, 10, 51–58. [Google Scholar] [CrossRef]
- Zaied, C.; Zouaoui, N.; Bacha, H.; Abid, S. Natural occurrence of zearalenone in Tunisian wheat grains. Food Control 2012, 25, 773–777. [Google Scholar] [CrossRef]
- Jedidi, I.; Mateo, E.M.; Marin, P.; Jimenez, M.; Said, S.; Gonzalez-Jaen, M.T. Contamination of Wheat, Barley, and Maize Seeds with Toxigenic Fusarium Species and Their Mycotoxins in Tunisia. J. AOAC Int. 2021, 104, 959–967. [Google Scholar] [CrossRef]
- Mahdjoubi, C.K.; Arroyo-Manzanares, N.; Hamini-Kadar, N.; García-Campaña, A.M.; Mebrouk, K.; Gámiz-Gracia, L. Multi-mycotoxin occurrence and exposure assessment approach in foodstuffs from Algeria. Toxins 2020, 12, 194. [Google Scholar] [CrossRef]
- El-Desouky, T.; Naguib, K. Occurrence of zearalenone contamination in some cereals in Egypt. Anim. Nutr. 2013, 12, 25. [Google Scholar]
- Bensassi, F.; Zaied, C.; Abid, S.; Hajlaoui, M.R.; Bacha, H. Occurrence of deoxynivalenol in durum wheat in Tunisia. Food Control 2010, 21, 281–285. [Google Scholar] [CrossRef]
- Oueslati, S.; Berrada, H.; Juan-García, A.; Mañes, J.; Juan, C. Multiple mycotoxin determination on Tunisian cereals-based food and evaluation of the population exposure. Food Anal. Methods 2020, 13, 1271–1281. [Google Scholar] [CrossRef]
- Oueslati, S.; Meca, G.; Mliki, A.; Ghorbel, A.; Mañes, J. Determination of Fusarium mycotoxins enniatins, beauvericin and fusaproliferin in cereals and derived products from Tunisia. Food Control 2011, 22, 1373–1377. [Google Scholar] [CrossRef]
- Oueslati, S.; Berrada, H.; Mañes, J.; Juan, C. Presence of mycotoxins in Tunisian infant foods samples and subsequent risk assessment. Food Control 2018, 84, 362–369. [Google Scholar] [CrossRef]
- Chakroun, Y.; Oueslati, S.; Pinson-Gadais, L.; Abderrabba, M.; Savoie, J.-M. Characterization of Fusarium acuminatum: A Potential Enniatins Producer in Tunisian Wheat. J. Fungi 2022, 8, 458. [Google Scholar] [CrossRef]
- Juan, C.; Mannai, A.; Ben Salem, H.; Oueslati, S.; Berrada, H.; Juan-García, A.; Mañes, J. Mycotoxins presence in pre- and post-fermented silage from Tunisia. Arab. J. Chem. 2020, 13, 6753–6761. [Google Scholar] [CrossRef]
- Estrada-Bahena, E.B.; Salazar, R.; Ramírez, M.; Moreno-Godínez, M.E.; Jiménez-Hernández, J.; Romero-Ramírez, Y.; González-Cortázar, M.; Alvarez-Fitz, P. Influence of water activity on physical properties, fungal growth, and ochratoxin A production in dry cherries and green-coffee beans. J. Food Process. Preserv. 2022, 46, e16226. [Google Scholar] [CrossRef]
- Daou, R.; Joubrane, K.; Maroun, R.G.; Khabbaz, L.R.; Ismail, A.; El Khoury, A. Mycotoxins: Factors influencing production and control strategies. AIMS Agric. Food 2021, 6, 416–447. [Google Scholar] [CrossRef]
- Vandicke, J.; De Visschere, K.; Croubels, S.; De Saeger, S.; Audenaert, K.; Haesaert, G. Mycotoxins in Flanders’ Fields: Occurrence and Correlations with Fusarium Species in Whole-Plant Harvested Maize. Microorganisms 2019, 7, 571. [Google Scholar] [CrossRef] [PubMed]
- Stanciu, O.; Juan, C.; Berrada, H.; Miere, D.; Loghin, F.; Mañes, J. Study on trichothecene and zearalenone presence in Romanian wheat relative to weather conditions. Toxins 2019, 11, 163. [Google Scholar] [CrossRef] [PubMed]
- Kamle, M.; Mahato, D.K.; Devi, S.; Lee, K.E.; Kang, S.G.; Kumar, P. Fumonisins: Impact on Agriculture, Food, and Human Health and Their Management Strategies. Toxins 2019, 11, 328. [Google Scholar] [CrossRef]
- Derouiche, S.; Mallet, C.; Hannachi, A.; Bargaoui, Z. Characterisation of rainfall events in northern Tunisia using self-organising maps. J. Hydrol. Reg. Stud. 2022, 42, 101159. [Google Scholar] [CrossRef]
- Blandino, M.; Haidukowski, M.; Pascale, M.; Plizzari, L.; Scudellari, D.; Reyneri, A. Integrated strategies for the control of Fusarium head blight and deoxynivalenol contamination in winter wheat. Field Crops Res. 2012, 133, 139–149. [Google Scholar] [CrossRef]
- Garcia-Cela, E.; Kiaitsi, E.; Medina, A.; Sulyok, M.; Krska, R.; Magan, N. Interacting Environmental Stress Factors Affects Targeted Metabolomic Profiles in Stored Natural Wheat and That Inoculated with F. graminearum. Toxins 2018, 10, 56. [Google Scholar] [CrossRef]
- Ayeni, K.; Atanda, O.; Krska, R.; Ezekiel, C. Present status and future perspectives of grain drying and storage practices as a means to reduce mycotoxin exposure in Nigeria. Food Control 2021, 126, 108074. [Google Scholar] [CrossRef]
- Dimitrakopoulou, M.-E.; Marinos, G.; Karvounis, M.; Stoitsis, G.; Manouselis, N.; Thanopoulos, C.; Elliott, C. What Lies Behind Mycotoxin Presence in Animal Feed? A Case Study☆. J. Food Prot. 2025, 88, 100464. [Google Scholar] [CrossRef] [PubMed]
- Nada, S.; Nikola, T.; Bozidar, U.; Ilija, D.; Andreja, R. Prevention and practical strategies to control mycotoxins in the wheat and maize chain. Food Control 2022, 136, 108855. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Liu, F.; Wang, Q.; Selvaraj, J.N.; Xing, F.; Zhao, Y.; Liu, Y. Ochratoxin A Producing Fungi, Biosynthetic Pathway and Regulatory Mechanisms. Toxins 2016, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.; Bottalico, A.; Mulé, G.; Moretti, A.; Perrone, G. Epidemiology of toxigenic fungi and their associated mycotoxins for some Mediterranean crops. In Epidemiology of Mycotoxin Producing Fungi; Springer: Berlin/Heidelberg, Germany, 2003; pp. 645–667. [Google Scholar] [CrossRef]
- Battisti, M.; Zavattaro, L.; Capo, L.; Blandino, M. Maize response to localized mineral or organic NP starter fertilization under different soil tillage methods. Eur. J. Agron. 2022, 138, 126534. [Google Scholar] [CrossRef]
- Liu, Y.; Jia, B.; Ren, Y.; Xun, W.; Stefanic, P.; Yang, T.; Miao, Y.; Zhang, N.; Yao, Y.; Zhang, R. Bacterial social interactions in synthetic Bacillus consortia enhance plant growth. iMeta 2025, e70053. [Google Scholar] [CrossRef]
- Chen, M.; Yang, H.; Yang, Q.; Li, Y.; Wang, H.; Wang, J.; Fan, Q.; Yang, N.; Wang, K.; Zhang, J.; et al. Different Impacts of Long-Term Tillage and Manure on Yield and N Use Efficiency, Soil Fertility, and Fungal Community in Rainfed Wheat in Loess Plateau. Plants 2024, 13, 3477. [Google Scholar] [CrossRef]
- Jasarevic, M.; Rodriguez, C.M.; Scialò, G.; De Santis, B.; Debegnach, F.; Palchetti, A.; D’Ambrosio, L.; Caprai, E.; Sonfack, G.M.; Mancinelli, R.; et al. Durum wheat kernel contamination by mycotoxigenic fungi and mycotoxins as affected by soil tillage and fertilization management in a Mediterranean environment. J. Plant Pathol. 2025, 107, 1363–1376. [Google Scholar] [CrossRef]
- Wild, C.P.; Miller, J.D.; Groopman, J.D. Mycotoxin Control in Low- and Middle-Income Countries; International Agency for Research on Cancer: Lyon, France, 2015. [Google Scholar]
- EFSA. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, e04718. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA J. 2011, 9, 2197. [Google Scholar] [CrossRef]
- EFSA. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, e06113. [Google Scholar] [CrossRef]
- de Sá, S.V.; Fernandes, J.O.; Faria, M.A.; Cunha, S.C. Assessment of Mycotoxins in Infants and Children Cereal-Based Foods: Dietary Exposure and Potential Health Risks. Expo. Health 2024, 17, 425–444. [Google Scholar] [CrossRef]
- Hoteit, M.; Abbass, Z.; Daou, R.; Tzenios, N.; Chmeis, L.; Haddad, J.; Chahine, M.; Al Manasfi, E.; Chahine, A.; Poh, O.B.J.; et al. Dietary Exposure and Risk Assessment of Multi-Mycotoxins (AFB1, AFM1, OTA, OTB, DON, T-2 and HT-2) in the Lebanese Food Basket Consumed by Adults: Findings from the Updated Lebanese National Consumption Survey Through a Total Diet Study Approach. Toxins 2024, 16, 158. [Google Scholar] [CrossRef]
- Kouadio, J.H. Risk assessment of mycotoxins intake through the consumption of maize, peanuts, rice and cassava in Côte d’Ivoire. Food Nutr. Sci. 2022, 13, 41–54. [Google Scholar] [CrossRef]
- EFSA; More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hougaard Bennekou, S.; Koutsoumanis, K.; Machera, K.; Naegeli, H. Statement on the derivation of Health-Based Guidance Values (HBGV s) for regulated products that are also nutrients. EFSA J. 2021, 19, e06479. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.; Calderón, R.; Godoy, M.; Riquelme, V. Occurrence and risk estimation of zearalenone and deoxynivalenol in oats, wheat flour, and cereals consumed in Chile during 2016–2022. J. Food Compos. Anal. 2024, 134, 106476. [Google Scholar] [CrossRef]
- Turner, P.C.; Snyder, J.A. Development and limitations of exposure biomarkers to dietary contaminants mycotoxins. Toxins 2021, 13, 314. [Google Scholar] [CrossRef] [PubMed]
- Aloui, A.; Ben Salah-Abbès, J.; Zinedine, A.; Riba, A.; Durand, N.; Meile, J.C.; Montet, D.; Brabet, C.; Abbès, S. Prevention and detoxification of mycotoxins in human food and animal feed using bio-resources from South Mediterranean countries: A critical review. Crit. Rev. Toxicol. 2023, 53, 117–130. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Guidance on risk–benefit assessment of foods. EFSA J. 2024, 22, e8875. [Google Scholar] [CrossRef]
- EFSA. Guidance on harmonised methodologies for human health, animal health and ecological risk assessment of combined exposure to multiple chemicals. EFSA J. 2019, 17, e05634. [Google Scholar] [CrossRef] [PubMed]
Total Samples Collected | Detected Mycotoxin | Number of Positive Samples | Frequency (%) | Mean Concentration 1 (µg/Kg) | Range (µg/Kg) |
---|---|---|---|---|---|
167 | ZEN | 65 | 38.92 | 26.85 | 10.14–255.41 |
DON | 62 | 37.12 | 0.68 | 0.01–9.11 | |
OTA | 68 | 40.71 | 1.85 | 1.02–11.45 | |
ENA1 | 10 | 5.98 | 1.69 | 2.10–70.5 | |
ENB | 51 | 30.53 | 10.13 | 8.20–384.20 | |
ENB1 | 20 | 11.98 | 3.38 | 3.29–71.23 |
Agricultural Practices | Year | Phase | Water Activity (aw) Values | Moisture Content Values |
---|---|---|---|---|
NT | 2021 | Pre-harvest | 0.59–0.69 | 11–14% |
Post-harvest | 0.63–0.70 | 12–15% | ||
CT | 2022 | Pre-harvest | 0.61–0.68 | 13–16% |
Post-harvest | 0.62–0.69 | 14–16% |
Detected Mycotoxin | Pre-Harvest (n = 37) | Post-Harvest (n = 36) | Positive Samples/Total Samples (Frequency, %) | ||||||
---|---|---|---|---|---|---|---|---|---|
Positive Samples | Frequency (%) | Mean 1 (µg/Kg) | Range (µg/Kg) | Positive Samples | Frequency (%) | Mean 1 (µg/Kg) | Range (µg/Kg) | ||
ZEN | 22 | 59.45 | 26.91 | 10.14–210.11 | 23 | 63.88 | 63.78 | 12.11–255.41 | 45/73 (61.64) |
DON | 17 | 45.94 | 1.13 | 0.08–9.11 | 18 | 50 | 0.42 | 0.01–2.15 | 35/73 (47.94) |
OTA | 13 | 35.13 | 1.60 | 1.56–9.55 | 13 | 36.11 | 1.80 | 1.23–11.45 | 26/73 (35.61) |
ENA1 | 2 | 5.40 | 0.43 | 5.52–10.74 | 1 | 2.77 | 0.40 | 14.55 | 3/73 (4.10) |
ENB | 17 | 45.94 | 19.26 | 8.81–247 | 3 | 3 | 1.12 | 12.50–14.22 | 20/73 (27.39) |
ENB1 | 14 | 37.83 | 9.62 | 11.49–71.23 | 0 | 0 | 0 | 0 | 0 |
Detected Mycotoxin | Pre-Harvest (n = 49) | Post-Harvest (n = 45) | Positive Samples/Total Samples (Frequency, %) | ||||||
---|---|---|---|---|---|---|---|---|---|
Positive Samples | Frequency (%) | Mean 1 (µg/Kg) | Range (µg/Kg) | Positive Samples | Frequency (%) | Mean 1 (µg/Kg) | Range (µg/Kg) | ||
ZEN | 2 | 4.08 | 10.41 | 44.56–122.56 | 18 | 40 | 28.32 | 10.71–211.25 | 20/94 (21.27) |
DON | 6 | 12.24 | 0.64 | 0.12–7.85 | 21 | 46.66 | 0.84 | 0.05–5.14 | 27/94 (28.72) |
OTA | 20 | 40.81 | 1.67 | 1.02–8.56 | 22 | 48.88 | 2.27 | 2.33–9.78 | 42/94 (44.68) |
ENA1 | 4 | 8.16 | 2.90 | 5.00–70.5 | 3 | 6.66 | 0.69 | 2.10–20.78 | 7/94 (7.44) |
ENB | 14 | 28.57 | 8.51 | 9.12–163.2 | 17 | 37.77 | 7.33 | 8.20–63.3 | 31/94 (32.98) |
ENB1 | 8 | 16.32 | 3.23 | 6.70–54 | 12 | 26.66 | 4.82 | 3.29–60.42 | 20/94 (21.27) |
Year (Farmers’ Practice Type) | Contamination (Number of Positive Samples, Frequency) | |||
---|---|---|---|---|
by 2 Mycotoxins | by 3 Mycotoxins | by 4 Mycotoxins | by 5 Mycotoxins | |
2021 (NT) N = 73 | ZEN + OTA DON + OTA ZEN + DON DON + ENB DON + ENB1 (20, 27%) | ZEN + ENB + ENB1 ZEN + OTA + ENB1 ZEN + OTA + DON (7, 10%) | DON + ENA1 + ENB + ENB1 ZEN + OTA + ENB + ENB1 ZEN + DON + ENA1 + ENB (5, 7%) | ZEN + DON + OTA + ENB + ENB1 ZEN + DON + ENA1 + ENB + ENB1 (4, 5%) |
2022 (CT) N = 94 | ENB + ENB1 ZEN + OTA ZEN + DON ZEN + ENB1 DON + OTA OTA + ENB OTA + ENB1 OTA + ENA1 DON + ENB (26, 28%) | ZEN + OTA + DON OTA + ENB + ENB1 ZEN + ENB + ENB1 DON + ENB + ENB1 DON + OTA + ENB (15, 16%) | DON + ENA1 + ENB + ENB1 DON + OTA + ENB + ENB1 DON + ENA1 + ENB1 (5, 5%) | ZEN + OTA + ENA1 + ENB + ENB1 ZEN + OTA + ENA1 + ENB + ENB1 ZEN + DON + OTA + ENA1 + ENB1 (3, 3%) |
Total (n = 167) | (46, 28%) | (22, 13%) | (10, 6%) | (7, 4%) |
Detected Mycotoxin | Mean Concentration 1 (µg/Kg) | EDI (ng/Kg bw/day) | HQ | MOE |
---|---|---|---|---|
2021 (NT) | ||||
OTA | 1.69 | 17.29 | - | 838.63 |
ZEN | 45.58 | 466.31 | 1.87 | |
DON | 0.78 | 8.00 | 0.008 | |
ENA1 | 0.42 | 4.30 | - | - |
ENB | 10.28 | 105.17 | - | - |
ENB1 | 4.88 | 49.91 | - | - |
2022 (CT) | ||||
OTA | 1.96 | 20.08 | - | 722.11 |
ZEN | 18.99 | 194.74 | 0.80 | - |
DON | 0.73 | 7.56 | 0.007 | |
ENA1 | 1.84 | 18.85 | - | - |
ENB | 11.82 | 121.08 | - | - |
ENB1 | 4.00 | 40.92 | - | - |
Internal Standards | Polarity | MRM Q | EC MRM Q |
---|---|---|---|
U-(13C34)-FUMB1 | + | 756.300 > 356.500 | −44 |
U-(13C20)-OTA | + | 424.600 > 250.250 | −21 |
U-(13C18)-ZEN | − | 331.100 > 185.000 | 28 |
U-[13C15)-DON | − | 370.800 > 59.000 | 24 |
Mycotoxins | MRM Q | EC MRM Q | Polarity | MRM QUAL | EC MRM q |
---|---|---|---|---|---|
OTA | 404.0 > 238.9 | −26 | + | 404.0 > 358.0 | −16 |
ZEN | 317.1 > 175.2 | 25 | − | 317.1 > 131.0 | 30 |
DON | 355.1 > 59.0 | 35 | − | 355.1 > 265.1 | 35 |
3ADON | 397.2 > 59.0 | 25 | − | 397.2 > 307.1 | 16 |
15ADON | 338.9 > 137.1 | −19 | + | 338.9 > 297.2 | −14 |
FUMB1 | 722.3 > 334.4 | −43 | + | 722.3 > 352.4 | −44 |
FUMB2 | 706.2 > 318.4 | −37 | + | 706.2 > 336.4 | −44 |
FUS-X | 355.0 > 175.10 | −19 | + | 355.0 > 247.1 | −12 |
ENA | 682.5 > 210.0 | −25 | + | 682.5 > 228.0 | −39 |
ENA1 | 668.5 > 100.1 | −30 | + | 668.5 > 210.0 | −12 |
ENB | 640.4 > 196.0 | −24 | + | 640.4 > 520.6 | −40 |
ENB1 | 654.50 > 196.0 | −25 | + | 654.5 > 57.1 | −36 |
CIT | 355.0 > 175.10 | −24 | + | 355.0 > 247.1 | −24 |
NEO | 400.2 > 185.1 | −22 | + | 400.2 > 215.1 | −16 |
HT2 | 447.2 > 345.2 | −18 | + | 447.2 > 285.1 | −21 |
T2 | 484.0 > 215.1 | −19 | + | 484.0 > 305.2 | −14 |
NIV | 371.0 > 281.1 | 17 | − | 371.0 > 311.2 | 12 |
Mycotoxin | LOD (µg/kg) | LOQ (µg/kg) | R2 |
---|---|---|---|
OTA | 0.3 | 0.9 | 0.8750 |
ZEN | 0.5 | 1.5 | 0.9733 |
DON | 0.005 | 0.015 | 0.9506 |
3ADON | 0.005 | 0.015 | 0.9901 |
15ADON | 0.005 | 0.015 | 0.9900 |
FB1 | 1.0 | 3 | 0.9996 |
FB2 | 3 | 9 | 0.9980 |
FUS-X | 5 | 15 | 0.9967 |
ENA | 0.3 | 0.9 | 0.9874 |
ENA1 | 0.2 | 0.6 | 0.9928 |
ENB | 0.5 | 1.5 | 0.9921 |
ENB1 | 0.5 | 1.5 | 0.9975 |
CIT | 0.5 | 1.5 | 0.9988 |
NEO | 5 | 15 | 0.9967 |
HT2 | 5 | 15 | 0.9961 |
T2 | 5 | 15 | 0.9904 |
NIV | 5 | 15 | 0.9992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassine, M.; Ben Hassouna, K.; Tissaoui, S.; Baraket, M.; Slim, A.; Slama, O.A.; Amara, H.S.; Al-Amiery, A.; Pallarés, N.; Berrada, H.; et al. Prevalence and Risk Assessment of Multiple Mycotoxins in Durum Wheat from Fields Under Different Agricultural Practices in Tunisia. Toxins 2025, 17, 410. https://doi.org/10.3390/toxins17080410
Hassine M, Ben Hassouna K, Tissaoui S, Baraket M, Slim A, Slama OA, Amara HS, Al-Amiery A, Pallarés N, Berrada H, et al. Prevalence and Risk Assessment of Multiple Mycotoxins in Durum Wheat from Fields Under Different Agricultural Practices in Tunisia. Toxins. 2025; 17(8):410. https://doi.org/10.3390/toxins17080410
Chicago/Turabian StyleHassine, Marwa, Khouloud Ben Hassouna, Salma Tissaoui, Mokhtar Baraket, Amine Slim, Olfa Ayed Slama, Hajer Slim Amara, Ahmed Al-Amiery, Noelia Pallarés, Houda Berrada, and et al. 2025. "Prevalence and Risk Assessment of Multiple Mycotoxins in Durum Wheat from Fields Under Different Agricultural Practices in Tunisia" Toxins 17, no. 8: 410. https://doi.org/10.3390/toxins17080410
APA StyleHassine, M., Ben Hassouna, K., Tissaoui, S., Baraket, M., Slim, A., Slama, O. A., Amara, H. S., Al-Amiery, A., Pallarés, N., Berrada, H., Abbès, S., & Salah-Abbès, J. B. (2025). Prevalence and Risk Assessment of Multiple Mycotoxins in Durum Wheat from Fields Under Different Agricultural Practices in Tunisia. Toxins, 17(8), 410. https://doi.org/10.3390/toxins17080410