Mycotoxins in Broiler Production: Impacts on Growth, Immunity, Vaccine Efficacy, and Food Safety
Abstract
:1. Introduction
2. Key Mycotoxins Relevant in Broiler Production
2.1. Aflatoxins
2.2. Trichothecenes
2.3. Deoxynivalenol
2.4. Fumonisins
2.5. Ochratoxin A
2.6. Zearalenone
3. Mycotoxins and Vaccine Efficacy in Broilers
3.1. Immunosuppressive Mechanisms
3.2. Reduced Vaccine Response and Disease Susceptibility
3.3. Maternal Immunity and Progeny Vulnerability
3.4. Co-Infections and Vaccine Failure
4. Effects of Mycotoxins on Broiler Health and Growth Performance
4.1. Physiological Effects
4.2. Immune Modulation
4.3. Disease Interactions and Co-Infections
- Coccidiosis (Eimeria spp.)
- Necrotic enteritis (Clostridium perfringens)
- Escherichia coli
- Salmonella spp.
- Fowl cholera (Pasteurella multocida)
- Infectious bursal disease (IBD)
- Infectious laryngotracheitis (ILT)
- Newcastle disease virus (NDV) and infectious bronchitis virus (IBV)
5. Implications for Consumer Health
5.1. From Feed to Food: The Contamination Pathway
5.2. Residue Accumulation and Food Safety Risks
5.3. Economic and Public Health Implications
5.4. A One Health Perspective
6. Mitigation Strategies and Regulatory Considerations
6.1. Regulatory Standards and Implementation Challenges
6.2. Monitoring Feed and Ingredients
6.3. Feed Additives and Experimental Detoxification Strategies
6.4. Antioxidants and Nutritional Modulators
6.5. Biological Interventions and Probiotics
6.6. Prevention Through Crop and Storage Management
7. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AFB1 | aflatoxin B1 |
DON | deoxynivalenol |
FUM | fumonisin |
OTA | ochratoxin A |
IC50 | half maximal inhibitory concentration |
References
- Tavárez, M.A.; Solis De los Santos, F. Impact of genetics and breeding on broiler production performance: A look into the past, present, and future of the industry. Anim. Front. 2016, 6, 37–41. [Google Scholar] [CrossRef]
- Raza, A.; Bushra, H.S. The Pernicious Activity of Aflatoxin on Biochemical and Reproductive Parameters of Commercial Male Birds: A Short Review. Acad. Lett. 2021, 3480, 6. [Google Scholar] [CrossRef]
- Kim, J.H. Determination of safe levels and toxic levels for feed hazardous materials in broiler chickens: A review. J. Anim. Sci. Technol. 2023, 65, 490–510. [Google Scholar] [CrossRef]
- Siegel, P.B. Evolution of the modern broiler and feed efficiency. Annu. Rev. Anim. Biosci. 2014, 2, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Bezerra da Rocha, M.E.; Oliveira Freireb, F.C.; Maiac, F.E.F.; Florindo Guedes, M.I.; Rondina, D. Mycotoxins and their effects on human and animal health. Food Control 2014, 36, 159–165. [Google Scholar] [CrossRef]
- Behnke, K.; Beyer, S. Effect of feed processing on broiler performance. In Proceedings of the VIII. International Seminar on Poultry Production and Pathology, Santiago, Chile; 2002; Volume 7, pp. 12–14. Available online: https://www.researchgate.net/publication/254439622_EFFECT_OF_FEED_PROCESSING_ON_BROILER_PERFORMANCE (accessed on 20 May 2025).
- Nazhand, A.; Durazzo, A.; Lucarini, M.; Souto, E.B.; Santini, A. Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. Foods 2020, 9, 644. [Google Scholar] [CrossRef] [PubMed]
- Pickova, D.; Ostry, V.; Malir, F. A Recent Overview of Producers and Important Dietary Sources of Aflatoxins. Toxins 2021, 13, 186. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, G.H.; Han, G.P.; Kil, D.Y. Effect of feeding corn distillers dried grains with solubles naturally contaminated with deoxynivalenol on growth performance, meat quality, intestinal permeability, and utilization of energy and nutrients in broiler chickens. Poult. Sci. 2021, 100, 101215. [Google Scholar] [CrossRef]
- Taevernier, L.; Wynendaele, E.; De Vreese, L.; Burvenich, C.; De Spiegeleer, B. The mycotoxin definition reconsidered towards fungal cyclic depsipeptides. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 114–135. [Google Scholar] [CrossRef]
- Murugesan, G.R.; Ledoux, D.R.; Naehrer, K.; Berthiller, F.; Applegate, T.J.; Grenier, B.; Phillips, T.D.; Schatzmayr, G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult. Sci. 2015, 94, 1298–1315. [Google Scholar] [CrossRef]
- Reisinger, N.; Doupovec, B.; Czabany, T.; Van Immerseel, F.; Croubels, S.; Antonissen, G. Endotoxin Translocation Is Increased in Broiler Chickens Fed a Fusarium Mycotoxin-Contaminated Diet. Toxins 2024, 16, 167. [Google Scholar] [CrossRef] [PubMed]
- Steyn, P.S. Mycotoxins, general view, chemistry and structure. Toxicol. Lett. 1995, 82–83, 843–851. [Google Scholar] [CrossRef]
- Aboagye-Nuamah, F.; Kwoseh, C.K.; Maier, D.E. Toxigenic mycoflora, aflatoxin and fumonisin contamination of poultry feeds in Ghana. Toxicon 2021, 198, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Alnaemi, H.S.; Dawood, T.N.; Algwari, Q.T. Investigation of Aflatoxin B1, Ochratoxin A, and Fumonisin B1 in Poultry Feeds in Nineveh Province. Iraqi J. Vet. Med. 2023, 47, 37–43. [Google Scholar] [CrossRef]
- Sakthi Priya, M.; Jagadeeswaran, A.; Natarajan, A. Detection of aflatoxin B1 (AFB1) in common ingredients of poultry and broiler feed under different seasons. J. Livest. Sci. 2023, 14, 163–168. [Google Scholar]
- Fouad, A.M.; Ruan, D.; El-Senousey, H.A.K.; Chen, W.; Jiang, S.; Zheng, C. Harmful effects and control strategies of aflatoxin B1 produced by Aspergillus flavus and Aspergillus parasiticus strains on poultry: A review. Toxins 2019, 11, 176. [Google Scholar] [CrossRef] [PubMed]
- Abidin, Z.; Khatoon, A.; Numan, M. Mycotoxins in broilers: Pathological alterations induced by aflatoxins and ochratoxins, diagnosis and determination, treatment and control of mycotoxicosis. World’s Poult. Sci. J. 2011, 67, 485–496. [Google Scholar] [CrossRef]
- Wang, Y.; Chai, T.; Lu, G.; Quan, C.; Duan, H.; Yao, M.; Zucker, B.-A.; Schlenker, G. Simultaneous detection of airborne aflatoxin, ochratoxin and zearalenone in a poultry house by immunoaffinity clean-up and high-performance liquid chromatography. Environ. Res. 2008, 107, 139–144. [Google Scholar] [CrossRef]
- Nuryono, N.; Noviandi, C.T.; Böhm, J.; Razzazi-Fazeli, E. A limited survey of zearalenone in Indonesian maize-based food and feed by ELISA and high-performance liquid chromatography. Food Control 2005, 16, 65–71. [Google Scholar] [CrossRef]
- Yang, C.; Song, G.; Lim, W. Effects of mycotoxin-contaminated feed on farm animals. J. Hazard. Mater. 2020, 389, 122087. [Google Scholar] [CrossRef]
- Ubi, G.M.; Edu, N.; Eyogor, E.; Ekpo, P.B.; Emmanuel, N.C.; Ambang, A.O.; Akpan, J.F.; Kalu, S.E.; Essien, I.S. Genotoxicity and metabolic pathway of aflatoxin isolate in contaminated poultry feed. Int. J. Avian Wildlife Biol. 2022, 6, 41–46. [Google Scholar] [CrossRef]
- Hussain, Z.; Khan, M.Z.; Khan, A.; Javed, I.; Saleemi, M.K.; Mahmood, S.; Asi, M.R. Residues of aflatoxin B1 in broiler meat: Effect of age and dietary aflatoxin B1 levels. Food Chem. Toxicol. 2010, 48, 3304–3307. [Google Scholar] [CrossRef]
- Alam, S.; Khan, N.A.; Muhammad, A.; Jan, I.; Hashmi, M.S.; Khan, A.; Khan, M.O. Carryover of aflatoxin B1 from feed to broilers’ tissues and its effect on chicken performance. J. Anim. Physiol. Anim. Nutr. 2020, 29, 214–221. [Google Scholar]
- Rashid, N.; Bajwa, M.A.; Rafeeq, M.; Khan, M.A.; Ahmad, Z.; Tariq, M.M.; Wadood, A.; Abbas, F. Prevalence of aflatoxin B1 in finished commercial broiler feed from west central Pakistan. J. Anim. Plant Sci. 2012, 22, 6–10. [Google Scholar]
- Rossia, C.N.; Takabayashi, C.R.; Ono, M.A.; Saito, G.H.; Itano, E.N.; Kawamura, O.; Hirooka, E.Y.; Ono, E.Y.S. Immunoassay based on monoclonal antibody for aflatoxin detection in poultry feed. Food Chem. 2012, 132, 2211–2216. [Google Scholar] [CrossRef]
- Omar, S.S.; Haddad, M.A.; Fakhri, Y. Prevalence and concentration of mycotoxins (Aflatoxin B1, Ochratoxin A, Deoxynivalenol, and Zearalenone) in boiled poultry eggs and probabilistic health risk assessment: A case study in Jordan. Int. J. Environ. Anal. Chem. 2021, 103, 4569–4581. [Google Scholar] [CrossRef]
- Palai, S. Preventing mycotoxicosis in poultry. Just Agric. 2023, 4, 1–7. [Google Scholar]
- Daodu, O.B.; Adebowale, T.K. Aflatoxin in commercial poultry feeds and clinico-pathological manifestation of aflatoxicosis in poultry in Southwest, Nigeria. Niger. Vet. J. 2016, 37, 109–116. [Google Scholar]
- Espada, Y.; Domingo, M.; Gomez, J.; Calvo, M.A. Pathological lesions following an experimental intoxication with aflatoxin B1 in broiler chickens. Res. Vet. Sci. 1992, 53, 275–279. [Google Scholar] [CrossRef]
- Corrier, D.E. Mycotoxicosis: Mechanisms of immunosuppression. Vet. Immunol. Immunopathol. 1991, 30, 73–87. [Google Scholar] [CrossRef]
- Ghaemmaghami, S.S.; Rouhanipour, H.; Sharif, S.D. Aflatoxin levels in poultry feed: A comparison of mash and pellet forms. Poult. Sci. 2024, 103, 103254. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Haleem, K.S.; Ghazanfar, S.; Tauseef, I.; Bano, N.; Adetunji, C.O.; Saleem, M.H.; Alshaya, H.; Paray, B.A. Quantitative estimation of aflatoxin level in poultry feed in selected poultry farms. Biomed. Res. Int. 2022, 2022, 5397561. [Google Scholar] [CrossRef] [PubMed]
- Anjum, M.A.; Khan, S.H.; Sahota, A.W.; Sardar, R. Assessment of aflatoxin B1 in commercial poultry feed and feed ingredients. J. Anim. Plant Sci. 2012, 22, 268–272. [Google Scholar]
- Jayasri, A.; Reddy, G.V.N.; Setty, O.H.; Reddy, V.R.; Reddy, G.U. Combined effect of dietary aflatoxin and ochratoxin on serum biochemical profile in broilers and their amelioration using adsorbents. Pharm. Innov. J. 2023, 12, 180–185. [Google Scholar]
- Nathanael, P.J.R.; Sakunthala, G. AFB1 induced changes in liver and serum of commercial broilers pertaining to certain biochemical aspects. Biolife 2014, 2, 845–849. [Google Scholar]
- Okash, H.; Song, B.; Song, Z. Hidden hazards revealed: Mycotoxins and their masked forms in poultry. Toxins 2024, 16, 137. [Google Scholar] [CrossRef]
- Macri, A.M.; Nagy, A.L.; Daina, S.; Toma, D.; Pop, I.D.; Nadăș, G.C.; Cătoi, A.F. Occurrence of types A and B trichothecenes in cereal products sold in Romanian markets. Toxins 2023, 15, 466. [Google Scholar] [CrossRef] [PubMed]
- Vörösházi, J.; Neogrády, Z.; Mátis, G.; Mackei, M. Pathological consequences, metabolism and toxic effects of trichothecene T-2 toxin in poultry. Poult. Sci. 2024, 103, 103471. [Google Scholar] [CrossRef] [PubMed]
- Vörösházi, J.; Mackei, M.; Sebők, C.; Tráj, P.; Márton, R.A.; Horváth, D.G.; Huber, K.; Neogrády, Z.; Mátis, G. Investigation of the effects of T-2 toxin in chicken-derived three-dimensional hepatic cell cultures. Sci. Rep. 2024, 14, 1195. [Google Scholar] [CrossRef]
- Ji, C.; Fan, Y.; Zhao, L. Review on biological degradation of aflatoxin, zearalenone and deoxynivalenol. Anim. Nutr. 2016, 2, 127–133. [Google Scholar] [CrossRef]
- Akinmusire, O.O.; El-Yuguda, A.-D.; Musa, J.A.; Oyedele, O.A.; Sulyok, M.; Somorin, Y.M.; Ezekiel, C.N.; Krska, R. Mycotoxins in poultry feed and feed ingredients in Nigeria. Mycotoxin Res. 2019, 35, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Riahi, I.; Pérez-Vendrell, A.M.; Schulthess, J.; Marquis, V. Biomarkers of deoxynivalenol toxicity in chickens with special emphasis on metabolic and welfare parameters. Toxins 2021, 13, 217. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.H.; Lee, S.I. Establishment of a chicken intestinal organoid culture system to assess deoxynivalenol-induced damage of the intestinal barrier function. J. Anim. Sci. Biotechnol. 2024, 15, 30. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Leblanc, J.C.; Nielsen, E.; et al. Assessment of information as regards the toxicity of deoxynivalenol for horses and poultry. EFSA J. 2023, 21, 7806. [Google Scholar]
- Zhai, S.; Zhu, Y.; Feng, P.; Li, M.; Wang, W.; Yang, L.; Yang, Y. Ochratoxin A: Its impact on poultry gut health and microbiota, an overview. Poult. Sci. 2021, 100, 101037. [Google Scholar] [CrossRef]
- Awad, W.A.; Ghareeb, K.; Dadak, A.; Gille, L.; Staniek, K.; Hess, M.; Böhm, J. Genotoxic effects of deoxynivalenol in broiler chickens fed low-protein feeds. Poult. Sci. 2012, 91, 550–555. [Google Scholar] [CrossRef]
- Mgbeahuruike, A.C.; Agina, O.A.; Anyanwu, M.U.; Emejuo, N.T.; Ekere, S.O.; Ugwu, P.C.; Uju, C.N.N.; Andong, F.A. Microbial contamination of poultry feed and the effects on birds’ performance. Anim. Res. Int. 2023, 20, 4834–4861. [Google Scholar]
- Saremi, H. Declaration of fumonisin as the main dangerous mycotoxin produced by Fusarium species on maize in Iran. J. Plant Sci. Phytopathol. 2024, 8, 13–14. [Google Scholar]
- Labuda, R.; Parich, A.; Vekiru, E.; Tančinova, D. Incidence of fumonisins, moniliformin and Fusarium species in poultry feed mixtures from Slovakia. Ann. Agric. Environ. Med. 2005, 12, 81–86. [Google Scholar]
- Guerre, P.; Lassallette, E.; Beaujardin-Daurian, U.; Travel, A. Fumonisins alone or mixed with other fusariotoxins increase the C22–24:C16 sphingolipid ratios in chickens and ducks, while deoxynivalenol and zearalenone have no effect. Toxins 2024, 25, 395. [Google Scholar]
- Del Bianchi, M.; Oliveira, C.A.F.; Albuquerque, R.; Guerra, J.L.; Correa, B. Effects of prolonged oral administration of aflatoxin B1 and fumonisin B1 in broiler chickens. Poult. Sci. 2005, 84, 1835–1840. [Google Scholar] [CrossRef]
- Tessari, E.N.C.; Kobashigawa, E.; Cardoso, A.L.S.P.; Ledoux, D.R.; Rottinghaus, G.E.; Oliveira, C.A.F. Effects of aflatoxin B1 and fumonisin B1 on blood biochemical parameters in broilers. Toxins 2010, 2, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Yli-Mattila, T.; Sundheim, L. Fumonisins in African countries. Toxins 2022, 14, 419. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Han, M.; Wang, X.; Guo, Y. Ochratoxin A: Overview of prevention, removal, and detoxification methods. Toxins 2023, 15, 565. [Google Scholar] [CrossRef] [PubMed]
- Kövesi, B.; Kulcsár, S.; Ancsin, Z.; Erdélyi, M.; Zándoki, E.; Gömbös, P.; Balogh, K.; Mézes, M. The effects of T-2 toxin, deoxynivalenol, and fumonisin B1 on oxidative stress-related genes in the kidneys of laying hens. Toxins 2024, 16, 154. [Google Scholar] [CrossRef]
- Brown, A.A.; Sasser, M.; Herrman, T. Financial losses due to fumonisin contamination in the Texas High Plains maize. Food Addit. Contam. Part A. 2024, 41, 201–211. [Google Scholar] [CrossRef]
- Naz, G.; Anjum, A.A.; Ali, T.; Nawaz, M.; Iqbal, S.; Abbas, M.; Manzoor, R. Molecular characterization of ochratoxin A-producing indigenous Aspergillus strains from poultry feed in Pakistan. Sains Malays. 2023, 52, 821–835. [Google Scholar]
- Tahir, M.A.; Abbas, A.; Muneeb, M.; Bilal, R.M.; Hussain, K.; Abdel-Moneim, A.E.; Farag, M.R.; Dhama, K.; Elnesr, S.S.; Alagawany, M. Ochratoxicosis in poultry: Occurrence, environmental factors, pathological alterations and amelioration strategies. World’s Poult. Sci. J. 2022, 78, 727–749. [Google Scholar] [CrossRef]
- Vartiainen, S.; Yiannikouris, A.; Apajalahti, J.; Moran, C.A. Comprehensive evaluation of the efficiency of yeast cell wall extract to adsorb ochratoxin A and mitigate accumulation of the toxin in broiler chickens. Toxins 2020, 12, 37. [Google Scholar] [CrossRef]
- Harčárová, M.; Naď, P. Incidence of trichothecenes deoxynivalenol and T-2 toxin in poultry feed mixtures. Folia Vet. 2023, 67, 18–23. [Google Scholar] [CrossRef]
- Khan, S.A.; Awan, K.; Urooj, A.; Itano, E.N. Ochratoxin-A-induced pathological changes in broiler chicks. Pure Appl. Biol. 2023, 12, 1608–1616. [Google Scholar] [CrossRef]
- Sdogati, S.; Pacini, T.; Bibi, R.; Caporali, A.; Verdini, E.; Orsini, S.; Ortenzi, R.; Pecorelli, I. Co-occurrence of aflatoxin B1, zearalenone and ochratoxin A in feed and feed materials in Central Italy from 2018 to 2022. Foods 2024, 13, 313. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Venancio, E.J.; Hirooka, E.Y.; Rigobello, F.; Ishikawa, A.; Nagashima, L.A.; Oba, A.; Itano, E.N. Avian ochratoxicosis: A review. Afr. J. Microbiol. Res. 2014, 8, 3216–3219. [Google Scholar]
- Singh, R.; Mandal, A.B.; Sharma, M.; Biswas, A. Effect of varying levels of dietary ochratoxin A on the performance of broiler chickens. Indian J. Anim. Sci. 2015, 85, 296–300. [Google Scholar] [CrossRef]
- Lee, J.; Cho, H.; Song, D.; Chang, S.; An, J.; Nam, J.; Lee, B.; Kim, S.; Kim, W.K.; Cho, J. Effects of combinations of toxin binders with or without natural components on broiler breeders exposed to ochratoxin A. Animals 2023, 13, 2266. [Google Scholar] [CrossRef]
- Kumar, A.; Jindal, N.; Shukla, C.L.; Asrani, R.K.; Ledoux, D.R.; Rottinghaus, G.E. Pathological changes in broiler chickens fed ochratoxin A and inoculated with Escherichia coli. Avian Pathol. 2004, 33, 413–417. [Google Scholar] [CrossRef]
- Abidin, Z.; Khatoon, A.; Arooj, N.; Hussain, S.; Ali, S.; Manzoor, A.W.; Saleemi, M.K. Estimation of ochratoxin A in poultry feed and its ingredients with special reference to temperature conditions. Br. Poult. Sci. 2017, 58, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, A.; ul Abidin, Z. An extensive review of experimental ochratoxicosis in poultry: II. Hemato-biochemical and immunological alterations along with other health issues. Toxin Rev. 2018, 40, 361–369. [Google Scholar] [CrossRef]
- Singh, M.; Singh, R.; Mandal, A.B.; Sharma, M. Influence of dietary supplementation of vitamin E in ameliorating adverse effects of ochratoxin on biochemical profile and immune response in broiler chickens. Indian J. Anim. Sci. 2016, 86, 1447–1452. [Google Scholar] [CrossRef]
- Armanini, E.H.; Boiago, M.M.; de Oliveira Cécere, B.G.; Oliveira, P.V.; Teixeira, C.J.S.; Strapazzon, J.V.; Bottari, N.B.; Silva, A.D.; Fracasso, M.; Vendruscolo, R.G.; et al. Protective effects of silymarin in broiler feed contaminated by mycotoxins: Growth performance, meat antioxidant status, and fatty acid profiles. Trop. Anim. Health Prod. 2021, 53, 442. [Google Scholar] [CrossRef]
- Fallahi, M.; Saremi, H.; Javan-Nikkhah, M.; Somma, S.; Haidukowski, M.; Logrieco, A.F.; Moretti, A. Isolation, molecular identification and mycotoxin profile of Fusarium species isolated from maize kernels in Iran. Toxins 2019, 11, 297. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.M.; Shahsavandi, S. Evaluation of antibody levels during simultaneous aflatoxicosis and vaccination against infectious laryngotracheitis in pullets. Biologicals 2008, 36, 327–329. [Google Scholar] [CrossRef] [PubMed]
- Valchev, I.; Marutsova, V.; Zarkov, I.; Ganchev, A.; Nikolov, Y. Effects of aflatoxin B1 alone or co-administered with mycotoxins on performance and humoral immunity of turkey broilers. Bulg. J. Vet. Med. 2017, 20, 38–50. [Google Scholar] [CrossRef]
- Martins, A.C.; Contreras, M.; Furian, T.Q.; Borges, K.A.; Nascimento, V.P. Cellular immune response after vaccination with Salmonella Gallinarum 9R in laying hens and addition of aflatoxin and absorbent in the feed. Res. Vet. Sci. 2022, 154, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.E.; Song, J.; Lee, H.J.; Kim, M.; Kim, D.W.; Jung, H.J.; Kim, B.; Lee, Y.; Yu, D.; Kim, D.W.; et al. Effects of high levels of deoxynivalenol and zearalenone on growth performance, and hematological and immunological parameters in pigs. Toxins 2018, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Supriya, C.; Reddy, P.S. Prenatal exposure to aflatoxin B1: Developmental, behavioral, and reproductive alterations in male rats. Sci. Nat. 2015, 102, 1–13. [Google Scholar] [CrossRef]
- Guo, F.; Wang, F.; Ma, H.; Ren, Z.; Yang, X.; Yang, X. Study on the interactive effect of deoxynivalenol and Clostridium perfringens on the jejunal health of broiler chickens. Poult. Sci. 2021, 100, 100807. [Google Scholar] [CrossRef] [PubMed]
- Elnabarawy, A.M.; Khalifa, M.M.; Shaban, K.S.; Kotb, W.S. Evaluation of the effect of mycotoxins in naturally contaminated feed on the efficacy of preventive vaccine against coccidiosis in broiler chickens. J. World’s Poult. Res. 2020, 10, 235–246. [Google Scholar] [CrossRef]
- Chen, X.; Ishfaq, M.; Wang, J. Effects of Lactobacillus salivarius supplementation on the growth performance, liver function, meat quality, immune responses and Salmonella Pullorum infection resistance of broilers challenged with Aflatoxin B. Poult. Sci. 2022, 101, 101651. [Google Scholar] [CrossRef]
- Viegas, S.; Assunção, R.; Martins, C.; Nunes, C.; Osteresch, B.; Twarużek, M.; Kosicki, R.; Grajewski, J.; Ribeiro, E.; Viegas, C. Occupational exposure to mycotoxins in swine production: Environmental and biological monitoring approaches. Toxins 2019, 11, 78. [Google Scholar] [CrossRef]
- Jiang, Y.; Ogunade, I.M.; Vyas, D.; Adesogan, A.T. Aflatoxin in dairy cows: Toxicity, occurrence in feedstuffs and milk and dietary mitigation strategies. Toxins 2021, 13, 283. [Google Scholar] [CrossRef] [PubMed]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Stela, M.; Bijak, M. T-2 toxin—The most toxic trichothecene mycotoxin: Metabolism, toxicity, and decontamination strategies. Molecules 2021, 26, 6868. [Google Scholar] [CrossRef] [PubMed]
- Girh, Z.M.S.A.; Shaapan, R.M. Overview of Aspergillosis in poultry—A review. Egypt. J. Vet. Sci. 2024, 55, 407–419. [Google Scholar]
- Okiki, P.A.; Ojiezeh, T.I.; Ogbimi, A.O. Effects of feeding diet rich in mycotoxins on the health and growth performances of broiler chicken. Int. J. Poult. Sci. 2010, 9, 1136–1139. [Google Scholar] [CrossRef]
- Yunus, A.W.; Blajet-Kosicka, A.; Kosicki, R.; Khan, M.Z.; Rehman, H.; Böhm, J. Deoxynivalenol as a contaminant of broiler feed: Intestinal development, absorptive functionality, and metabolism of the mycotoxin. Poult. Sci. 2012, 91, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Andretta, I.; Kipper, M.; Lehnen, C.R.; Hauschild, L.; Vale, M.M.; Lovatto, P.A. Meta-analytical study of productive and nutritional interactions of mycotoxins in broilers. Poult. Sci. 2011, 90, 1934–1940. [Google Scholar] [CrossRef] [PubMed]
- Gentles, A.; Smith, E.E.; Kubena, L.F.; Duffus, E.; Johnson, P.; Thompson, J.; Harvey, R.B.; Edrington, T.S. Toxicological evaluations of cyclopiazonic acid and ochratoxin A in broilers. Poult. Sci. 1999, 78, 1380–1384. [Google Scholar] [CrossRef]
- Salama, T.M.; Kamal, M.A.M.; Abdelfatah, S.H.; Salem, H.M.; Mohamed, F.F. Ameliorative effect of a novel enzymatic detoxifier against natural field levels of mycotoxins in the broiler chicken diet. J. Adv. Vet. Res. 2024, 14, 228–234. [Google Scholar]
- Batik, M.M.; El-nabarawy, A.M.; Shakal, M.A.S.; Hegazy, A.-H.M.; Morsy, E.A. The effect of mycotoxins in naturally contaminated diet on the pathogenicity of Escherichia coli in broiler chickens. World Vet. J. 2021, 11, 745–757. [Google Scholar] [CrossRef]
- Mazur-Kuśnirek, M.; Lipiński, K.; Antoszkiewicz, Z.; Śliżewska, K. The effect of synbiotics and probiotics on ochratoxin concentrations in blood and tissues, health status, and gastrointestinal function in turkeys fed diets contaminated with ochratoxin A. Animals. 2024, 14, 3024. [Google Scholar] [CrossRef]
- Liu, J.D.; Shanmugasundaram, R.; Doupovec, B.; Schatzmayr, D.; Murugesan, G.R.; Applegate, T.J. Short-term exposure to fumonisins and deoxynivalenol, on broiler growth performance and cecal Salmonella load during experimental Salmonella Enteritidis infection. Poult. Sci. 2023, 102, 102677. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, S.M.; Azzam, A.; Gabal, M.A. Interaction of naturally occurring aflatoxins in poultry feed and immunization against fowl cholera. Poult. Sci. 1991, 70, 2425–2428. [Google Scholar] [CrossRef] [PubMed]
- Al-Taee, Z.T.; Saeed, M.G. Correlation incidence between infectious bursal disease and aflatoxicosis in broiler chicken farms in Nineveh province, Iraq. Iraqi J. Vet. Sci. 2023, 37, 183–190. [Google Scholar] [CrossRef]
- Pozo, V.F.; Schroeder, T.C. Evaluating the costs of meat and poultry recalls to food firms using stock returns. Food Policy 2016, 59, 66–77. [Google Scholar] [CrossRef]
- Imran, M.; Cao, S.; Wan, S.F.; Chen, Z.; Saleemi, M.K.; Wang, N.; Naseem, M.N.; Munawar, J. Mycotoxins–a global one health concern: A review. Agrobiol. Rec. 2020, 2, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Magri, C.A.; Garcia, R.G.; Binotto, E.; Burbarelli, M.F.; Gandra, E.R.; Przybulinski, B.B.; Caldara, F.R.; Komiyama, C.M. Occupational risks and their implications for the health of poultry farmers. Work 2021, 70, 815–822. [Google Scholar] [CrossRef]
- Nakavuma, J.L.; Kirabo, A.; Bogere, P.; Nabulime, M.M.; Kaaya, A.N.; Gnonlonfin, B. Awareness of mycotoxins and occurrence of aflatoxins in poultry feeds and feed ingredients in selected regions of Uganda. Int. J. Food Contam. 2020, 7, 1. [Google Scholar] [CrossRef]
- Mokubedi, S.M.; Phoku, J.Z.; Changwa, R.N.; Gbashi, S.; Njobeh, P.B. Analysis of mycotoxins contamination in poultry feeds manufactured in selected provinces of South Africa using UHPLC-MS/MS. Toxins 2019, 11, 452. [Google Scholar] [CrossRef]
- Morrison, D.M.; Ledoux, D.R.; Chester, L.F.B.; Samuels, C.A.N. A limited survey of aflatoxins in poultry feed and feed ingredients in Guyana. Vet. Sci. 2017, 4, 60. [Google Scholar] [CrossRef]
- Alshawabkeh, K.; Alkhalaileh, N.I.; Abdelqader, A.; Al-Fataftah, A.A.; Herzallah, S.M. Occurrence of aflatoxin B1 in poultry feed and feed ingredients in Jordan using ELISA and HPLC. Am.-Eurasian J. Toxicol. Sci. 2015, 7, 316–320. [Google Scholar]
- Kachhadia, L.; Katole, S.B.; Patel, N. Mycotoxin-detoxifying agents to counteract mycotoxins in livestock feeds. Pharma Innov. 2023, 12, 2780–2784. [Google Scholar]
- Kövesi, B.; Kulcsár, S.; Ancsin, Z.; Erdélyi, M.; Zándoki, E.; Gömbös, P.; Balogh, K.; Mézes, M. Multi-Fusarium mycotoxin exposure activates Nrf2 and Ahr pathway in the liver of laying hens. Toxicol. Lett. 2024, 391, 55–61. [Google Scholar] [CrossRef] [PubMed]
- De Mil, T.; Devreese, M.; Maes, A.; De Saeger, S.; De Backer, P.; Croubels, S. Influence of mycotoxin binders on the oral bioavailability of tylosin, doxycycline, diclazuril, and salinomycin in fed broiler chickens. Poult. Sci. 2017, 96, 2137–2144. [Google Scholar] [CrossRef]
- Pappas, A.C.; Tsiplakou, E.; Georgiadou, M.; Anagnostopoulos, C.; Markoglou, A.N.; Liapis, K.; Zervas, G. Bentonite binders in the presence of mycotoxins: Results of in vitro preliminary tests and an in vivo broiler trial. Appl. Clay Sci. 2014, 99, 48–53. [Google Scholar] [CrossRef]
- Fernandes, J.I.M.; Baldo, J.S.; Ferreira, A.C.P.; Schuroff, J.S.; Reuter, A.H.; Salinas, B.C.D. Effect of adsorbents on diets with corn contaminated by mycotoxins on the productive performance and health of broilers. Acta Sci. Anim. Sci. 2022, 44, e53575. [Google Scholar] [CrossRef]
- Hamed, D.M.; Elhalous, D.S.A.; Mohamed, O.A.; Elfeil, W.M. Protective efficacy of microbial and mycotoxin feed additives against contaminated feed with ochratoxin in broiler chicken. Suez Canal Vet. Med. J. 2023, 28, 207–221. [Google Scholar] [CrossRef]
Mycotoxin | Main Fungal Producers | Target Organs/Systems | Key Effects |
---|---|---|---|
Aflatoxins | Aspergillus flavus, A. parasiticus | Liver, kidney, immune organs | Hepatotoxicity, immunosuppression, carcinogenicity |
Trichothecenes | Fusarium spp., Myrothecium, Stachybotrys | Liver, immune system | Protein synthesis inhibition, immunosuppression |
Deoxynivalenol (DON) | Fusarium graminearum | GIT, immune system, liver | GIT damage, immunomodulation, feed refusal |
Fumonisins | Fusarium verticillioides, F. proliferatum | Liver, kidneys, immune system | Hepatic necrosis, immune disruption, poor growth |
Ochratoxin A (OTA) | Aspergillus spp., Penicillium spp. | Kidneys, liver, immune system | Nephrotoxicity, immunosuppression, embryotoxicity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olariu, R.M.; Fiţ, N.I.; Bouari, C.M.; Nadăş, G.C. Mycotoxins in Broiler Production: Impacts on Growth, Immunity, Vaccine Efficacy, and Food Safety. Toxins 2025, 17, 261. https://doi.org/10.3390/toxins17060261
Olariu RM, Fiţ NI, Bouari CM, Nadăş GC. Mycotoxins in Broiler Production: Impacts on Growth, Immunity, Vaccine Efficacy, and Food Safety. Toxins. 2025; 17(6):261. https://doi.org/10.3390/toxins17060261
Chicago/Turabian StyleOlariu, Ramona Maria, Nicodim Iosif Fiţ, Cosmina Maria Bouari, and George Cosmin Nadăş. 2025. "Mycotoxins in Broiler Production: Impacts on Growth, Immunity, Vaccine Efficacy, and Food Safety" Toxins 17, no. 6: 261. https://doi.org/10.3390/toxins17060261
APA StyleOlariu, R. M., Fiţ, N. I., Bouari, C. M., & Nadăş, G. C. (2025). Mycotoxins in Broiler Production: Impacts on Growth, Immunity, Vaccine Efficacy, and Food Safety. Toxins, 17(6), 261. https://doi.org/10.3390/toxins17060261