Green and Efficient Separation and Extraction of Salt Lake Resources

A special issue of Separations (ISSN 2297-8739). This special issue belongs to the section "Separation Engineering".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 6421

Special Issue Editors


E-Mail Website
Guest Editor
Key Laboratory of Green and Highly-end Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
Interests: separate materials and technologies for the rare elements in salt lakes

E-Mail Website
Guest Editor
Key Laboratory of Green and Highly-end Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai 810008, China
Interests: separation technology of rare elements in salt lakes

E-Mail Website
Guest Editor
Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education of China College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
Interests: phase equilibria and separation of salt lake resources

Special Issue Information

Dear Colleagues,

Salt lakes are invaluable repositories of multi-ionic and multi-component inorganic salt resources, rich in elements such as potassium, lithium, boron, rubidium and cesium. These resources are closely tied to developments in agriculture, industry and aerospace. With technological advancements, particularly in new energy and high-tech industries, there is an increasing demand for the development and utilization of components such as lithium, boron, rubidium and cesium from brines. The key scientific and technological challenges in efficient separation and extraction techniques have become pivotal for maximizing resource utilization.

This Special Issue aims to highlight breakthroughs and innovations in the green and efficient separation and extraction of salt lake resources. We seek contributions that report on the latest advancements in materials, mechanisms and processes in the adsorption, extraction, membrane technologies, electrochemistry and other relevant techniques for brine utilization. Our goal is to provide valuable insights and methods for the green and efficient development of salt lake resources.

Therefore, we cordially invite you to contribute your research articles, communications or reviews to this Special Issue. Your contribution will play a significant role in advancing this crucial field and offering insights into the efficient utilization of salt lake resources.

Prof. Dr. Xiushen Ye
Prof. Dr. Dandan Gao
Prof. Dr. Shiqiang Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Separations is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lithium
  • rubidium
  • cesium
  • boron
  • potassium
  • salt lake
  • adsorption
  • extraction
  • membrane separation
  • phase separation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 4706 KiB  
Article
Preparation of Lithium Carbonate from Manganese-Containing Desorption Solution from Salt Lakes via an Organophosphoric Acid Extraction System
by Shaolei Xie, Yuze Zhang, Xiaowu Peng, Yong Niu, Hailong Lu, Fugen Song, Dong Shi and Lijuan Li
Separations 2025, 12(4), 98; https://doi.org/10.3390/separations12040098 - 15 Apr 2025
Viewed by 161
Abstract
Adsorption is a popular method for the recovery of low-grade lithium. It is a low-cost and highly efficient way to treat solutions with low lithium concentrations. The impurity content determines the industrial application. This study investigated a novel strategy to remove divalent cations [...] Read more.
Adsorption is a popular method for the recovery of low-grade lithium. It is a low-cost and highly efficient way to treat solutions with low lithium concentrations. The impurity content determines the industrial application. This study investigated a novel strategy to remove divalent cations from a desorption solution containing Mg2+, Ca2+, and Mn2+, generated by a manganese absorbent using an organophosphoric acid, followed by precipitation of lithium carbonate from the concentrated raffinate by evaporation. Di(2-ethylhexyl)phosphoric acid (P204) was selected as the preferred extractant. The saponification method and degree of saponification were determined, and the extraction parameters (pH, extractant concentration, and phase ratio) were investigated. A three-stage countercurrent extraction process was tested. Removal efficiencies of Mg2+, Ca2+, and Mn2+ from the manganese-containing desorption solution exceeded 99%, leaving <1.0 mg/L divalent cations in the raffinate. The raffinate was evaporated and concentrated to >23 g/L lithium. The total concentration of divalent cations in the lithium-rich solution was approximately 10.0 mg/L. Further conversion with sodium carbonate was carried out to prepare a battery-grade lithium carbonate product with a purity of 99.83%. The present work may provide a novel means of lithium recovery from a manganese-containing desorption solution. Full article
(This article belongs to the Special Issue Green and Efficient Separation and Extraction of Salt Lake Resources)
Show Figures

Figure 1

21 pages, 13811 KiB  
Article
Experimental Study on Brine Storage for Overwintering by Using Salinity-Gradient Solar Pond in Zabuye Salt Lake, Tibet
by Qian Wu, Yunsheng Wang, Jintao Zhang, Ke Zhang, Juntao Li, Zhikui He, Lingzhong Bu, Jiangjiang Yu and Zhen Nie
Separations 2025, 12(2), 54; https://doi.org/10.3390/separations12020054 - 19 Feb 2025
Viewed by 562
Abstract
Known as the “white oil”, lithium is a key raw material to support strategic emerging industries and future industrial development. Zabuye Salt Lake is the only one in Tibet, China that has so far realized the industrialization of lithium extraction from the salt [...] Read more.
Known as the “white oil”, lithium is a key raw material to support strategic emerging industries and future industrial development. Zabuye Salt Lake is the only one in Tibet, China that has so far realized the industrialization of lithium extraction from the salt lake brine. The green and low-cost lithium extraction technology by using the salinity-gradient solar pond (SGSP) adopted has always been paid much attention by lithium-related practitioners and researchers. In order to improve the lithium yield and grade of a single crystallization pond, the cross-year brine mixing method can be used to increase the initial temperature and CO32− concentration of the raw brine for making the SGSP. The premise is to ensure that the summer brine with low Li+ and high CO32− prepared in the previous year could be stored safely for overwintering with a minimal change in brine composition, for use in brine mixing in February and March of the next year, which can be realized by using the SGSP. In this paper, two experiments of brine storage for overwintering were carried out in the Zabuye mining area, Tibet in 2020 and 2021 by using the large-scale SGSP with an area of nearly 4000 m2. The results show that during the operation of the SGSP in winter, the brine temperature in the lower convective zone (LCZ) can still rise to more than 20 °C and remain relatively stable, indicating that the coverage of surface ice layer not only has an effect of heat preservation and insulation on the SGSP, but also plays a positive role in the thermal storage capacity of the SGSP. The vertical distributions of brine temperature, density and salinity in the pond showed the ideal gradient curves increasing from top to bottom, and the concentrations of Li+ and CO32− in the brine only decreased slightly. The structure of the salinity-gradient layer tended to stabilize faster when the brine filling depth was larger, but the boundary between the upper convective zone (UCZ) and the non-convective zone (NCZ) was relatively blurred. It is completely feasible to store the brine for overwintering by using the SGSP in the Zabuye mining area, and the experimental results could be directly scalable to larger industrial applications. It can not only provide high-quality raw brine for cross-year brine mixing, but also reduce the pressure of brine production, and a small amount of lithium mixed salt collected is helpful to increase the output of a single crystallization pond. Additionally, the potential challenges of maintaining the SGSP system during extreme winter conditions are described, and effective measures and suggestions are proposed to make the technology feasible in diverse climates. Full article
(This article belongs to the Special Issue Green and Efficient Separation and Extraction of Salt Lake Resources)
Show Figures

Figure 1

13 pages, 3850 KiB  
Article
Electromigration Separation of Lithium Isotopes with the Benzo-12-Crown-4-Ether (B12C4) System
by Zhiyu Zhao, Lianjing Mao, Tianyu Zheng, Xiao Li, Chunsen Ye, Pengrui Zhang, Huifang Li, Wei Sun and Jinhe Sun
Separations 2025, 12(2), 27; https://doi.org/10.3390/separations12020027 - 26 Jan 2025
Viewed by 551
Abstract
Enriched lithium isotopes (6Li and 7Li) are essential in the nuclear energy industry, where 6Li is bombarded with neutrons to produce tritium for fusion reactions, while 7Li is used as a core coolant and pH regulator. Separation of [...] Read more.
Enriched lithium isotopes (6Li and 7Li) are essential in the nuclear energy industry, where 6Li is bombarded with neutrons to produce tritium for fusion reactions, while 7Li is used as a core coolant and pH regulator. Separation of 6Li and 7Li by electromigration is a promising method for producing enriched lithium isotopes that fulfill industrial needs. In this work, based on a previously proposed biphasic system electromigration routine, a three-stage system of ‘LiCl aqueous solution (anolyte)|B12C4-[EMIm][NTf2] organic solution|NH4Cl aqueous solution (catholyte)’ was constructed and the rules of lithium isotope separation and lithium-ion migration investigated. It was shown that the isotope enrichment effect of the catholyte was greatly affected by the experimental conditions, while that of the organic solution was less affected. As the B12C4 concentration increased, enhancement of 7Li enrichment in the catholyte and 6Li enrichment in the organic solution was observed, and α(C/O) and α(O/A) reached 0.975 and 1.018 at B12C4 of 0.5 mol/L. With the increase in current, migration time, and LiCl concentration, the isotope that was enriched in the catholyte trended from 7Li to 6Li (about 6 mA, 12 h or LiCl of 5 mol/L). Taking lithium-ion transport efficiency and lithium isotope separation effect into consideration together, a current of at least 6 mA, duration of at least 12 h, LiCl concentration of at least 1 mol/L and B12C4 concentration of 0.2 mol/L are suggested for the electromigration process. The work provides an important reference for system construction and experimental design of a biphasic electromigration separation method, which is expected to be an industrial alternative because of its environmental protection and high efficiency. Full article
(This article belongs to the Special Issue Green and Efficient Separation and Extraction of Salt Lake Resources)
Show Figures

Figure 1

16 pages, 3550 KiB  
Article
Phase Equilibrium of CO2 Hydrate with Rubidium Chloride Aqueous Solution
by Ryonosuke Kasai, Leo Kamiya and Ryo Ohmura
Separations 2025, 12(1), 13; https://doi.org/10.3390/separations12010013 - 11 Jan 2025
Viewed by 1048
Abstract
Salt lakes are a rich source of metals used in various fields. Rubidium is found in small amounts in salt lakes, but extraction technology on an industrial scale has not been developed completely. Clathrate hydrates are crystalline compounds formed by the encapsulation of [...] Read more.
Salt lakes are a rich source of metals used in various fields. Rubidium is found in small amounts in salt lakes, but extraction technology on an industrial scale has not been developed completely. Clathrate hydrates are crystalline compounds formed by the encapsulation of guest molecules in cage-like structures made of water molecules. One of the most important properties for engineering practices of hydrate-based technologies is the comprehension of the phase equilibrium conditions. Phase equilibrium conditions of CO2 hydrate in rubidium chloride aqueous solution with mass fractions of 0.05, 0.10, 0.15 and 0.20 were experimentally investigated in the pressure range from 1.27 MPa to 3.53 MPa, and the temperature was from 268.7 K to 280.6 K. The measured equilibrium temperature in this study decreased roughly in proportion to the concentration of the RbCl solution from the pure water system. This depression is due to the lowering of the chemical potential of water in the liquid phase by the dissolution of RbCl. Experimental results compared with other salt solution + CO2 hydrate systems showed that the equilibrium temperatures decreased to a similar degree for similar mole fractions. Full article
(This article belongs to the Special Issue Green and Efficient Separation and Extraction of Salt Lake Resources)
Show Figures

Figure 1

22 pages, 5851 KiB  
Article
Ion Activity Coefficient of Sodium Halides in Anion-Exchange Polymers: Empirical Model Based on Manning’s Counterion Condensation Theory
by Guiming Liu and Dandan Gao
Separations 2024, 11(12), 360; https://doi.org/10.3390/separations11120360 - 23 Dec 2024
Viewed by 773
Abstract
The theory of electrolyte solution provides a precise description of the thermodynamic state and non-ideality of electrolyte solutions, allowing for the accurate prediction of the crystallization separation process of Salt Lake brine. Analogously, we attempt to describe the non-ideality of ions in ion-exchange [...] Read more.
The theory of electrolyte solution provides a precise description of the thermodynamic state and non-ideality of electrolyte solutions, allowing for the accurate prediction of the crystallization separation process of Salt Lake brine. Analogously, we attempt to describe the non-ideality of ions in ion-exchange polymers based on Manning’s Counterion Condensation Theory, which was originally used to describe the thermodynamics of polyelectrolyte solutions, has amply proven the potential to extend to ion-exchange polymers. In this article, equilibrium solvent and solute concentrations in aminated cross-linked polystyrene AEM were determined experimentally as a function of external NaCl concentration, and ion activity coefficients in the membranes were obtained via a thermodynamic treatment. With the recombination and empirical parameters added to Manning’s model, the ion activity coefficient of NaCl and NaBr in the aminated cross-linked polystyrene AEM can be accurately described in concentration ranges of 0.01 mol·kg1~3 mol·kg1. Compared with the original model, the Coefficient of Determination between the improved model and the experimental data was increased from 0.65 to 0.95. The Residual Sum of Squares is reduced by about one order of magnitude, significantly improving the Manning model’s adaptability when applied to AEM. Full article
(This article belongs to the Special Issue Green and Efficient Separation and Extraction of Salt Lake Resources)
Show Figures

Figure 1

10 pages, 2330 KiB  
Article
The 288.2 K Isothermal Evaporation Experiment of Potassium Precipitation Brine in West Taijinair Salt Lake
by Yousheng Yang, Xiaowang Wu, Xudong Yu, Jiazheng Qin, Jianjun Su, Caixiong Quan and Pan Xu
Separations 2024, 11(12), 348; https://doi.org/10.3390/separations11120348 - 9 Dec 2024
Viewed by 855
Abstract
Rubidium and cesium are important strategic resources, and West Taijinar Salt Lake is rich in rubidium and cesium reserves, while the concentration is low and the relationship with coexisting potassium and magnesium ions is complex. In order to understand the evaporative enrichment and [...] Read more.
Rubidium and cesium are important strategic resources, and West Taijinar Salt Lake is rich in rubidium and cesium reserves, while the concentration is low and the relationship with coexisting potassium and magnesium ions is complex. In order to understand the evaporative enrichment and salt precipitation patterns of rare elements such as lithium, rubidium, cesium, and boron of the brine after potassium precipitation in West Taijinar Salt Lake, the 288.2 K isothermal evaporation experiment was carried out. The experimental results show that during the evaporation process at 288.2 K, the following salts precipitate from the brine after potassium crystallization: halite (NaCl), bischofite (MgCl2·6H2O), carnallite (KCl·MgCl2·6H2O), hexahydrite (MgSO4·6H2O), epsomite (MgSO4·7H2O), boric acid (H3BO3), and lithium sulfate monohydrate (Li2SO4·H2O). The concentrations of lithium and boron are significantly enriched, the content of Li+ was enriched from 1.7 g/L to 5.63 g/L, and the B2O3 content was enriched from 6.72 g/L to 50.78 g/L. The isomorphism phenomenon of Rb+, Cs+, and K+ makes Rb+ and Cs+ enter potassium ore to form solid solution-type carnallite ((K, Rb)MgCl3·6H2O, (K, Cs)MgCl3·6H2O)) and reduce the content of brine. This study provides data support for the development and comprehensive utilization of lithium, boron, rubidium, and cesium resources in West Taijinar Salt Lake. Full article
(This article belongs to the Special Issue Green and Efficient Separation and Extraction of Salt Lake Resources)
Show Figures

Figure 1

11 pages, 2615 KiB  
Article
Solid–Liquid Phase Equilibria of the Aqueous Quaternary System Rb+, Cs+, Mg2+//SO42− - H2O at T = 323.2 K
by Zhangfa Yu, Ying Zeng, Xuequn Li, Hongbo Sun, Longgang Li, Wanghai He, Peijun Chen and Xudong Yu
Separations 2024, 11(11), 309; https://doi.org/10.3390/separations11110309 - 27 Oct 2024
Cited by 1 | Viewed by 880
Abstract
Sulfate-type salt lakes constitute over half of the total salt lakes in China and are rich in rare elements, such as rubidium and cesium. However, the complex interactions between ions make the separation and extraction process quite challenging. To address this, phase equilibrium [...] Read more.
Sulfate-type salt lakes constitute over half of the total salt lakes in China and are rich in rare elements, such as rubidium and cesium. However, the complex interactions between ions make the separation and extraction process quite challenging. To address this, phase equilibrium studies were conducted on the sulfate system containing rubidium, cesium, and magnesium. Specifically, the phase equilibria of the aqueous quaternary system Rb+, Cs+, Mg2+//SO42− - H2O at 323.2 K were investigated using the isothermal dissolution method. The solubility, density, and refractive index of the system were experimentally measured. The results indicate that the system at 323.2 K belongs to a complex type with the formation of one solid solution (Rb, Cs)2SO4 and two double salts (Rb2SO4·MgSO4·6H2O, Cs2SO4·MgSO4·6H2O). The corresponding phase diagram consists of four quaternary invariant points, nine univariate curves, and six crystallization regions. Among these, the crystalline region for Cs2SO4·MgSO4·6H2O is the largest, while that for the single salt Cs2SO4 is the smallest. Moreover, the crystalline regions for the double salt and solid solutions are significantly larger than those for the single salt, highlighting the difficulty in separation of valuable single salts. A comparison of multi-temperature phase diagrams from 298.2 K to 323.2 K reveals that the crystalline form of MgSO4 changes from MgSO4·7H2O (298.2 K) to MgSO4·6H2O (323.2 K). As the temperature increases, the phase regions for Rb2SO4, Cs2SO4, (Rb, Cs)2SO4, and Cs2SO4·MgSO4·6H2O expand, while the phase region of Rb2SO4·MgSO4·6H2O contracts, indicating that the single salts (Rb2SO4, Cs2SO4) are more readily precipitated at higher temperature, which provides theoretical guidance for the future production and separation of Rb, Cs, and Mg from sulfate-type salt lakes. Full article
(This article belongs to the Special Issue Green and Efficient Separation and Extraction of Salt Lake Resources)
Show Figures

Figure 1

13 pages, 5851 KiB  
Article
High-Efficiency Selective Adsorption of Rubidium and Cesium from Simulated Brine Using a Magnesium Ammonium Phosphate Adsorbent
by Haining Liu, Yanping Wang, Qiongyuan Zhang, Wenjie Han, Huifang Zhang and Xiushen Ye
Separations 2024, 11(9), 277; https://doi.org/10.3390/separations11090277 - 23 Sep 2024
Cited by 1 | Viewed by 1062
Abstract
Rubidium and cesium are critical strategic elements, and their development and utilization are of great significance. In this study, a magnesium ammonium phosphate (MAP) adsorbent was prepared and characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, and [...] Read more.
Rubidium and cesium are critical strategic elements, and their development and utilization are of great significance. In this study, a magnesium ammonium phosphate (MAP) adsorbent was prepared and characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, and Fourier transform infrared spectroscopy (FTIR). The adsorption performance of the adsorbent for Rb+ and Cs+ in solution was investigated. The results showed that the adsorbent exhibited high adsorption capacities of 2.83 mol/g for Rb+ and 4.37 mol/g for Cs+. In simulated brine, the adsorbent demonstrated excellent selectivity for Cs+. Kinetic and thermodynamic studies indicated that the adsorption process followed a pseudo-second order kinetic model and Langmuir isotherm model. The primary adsorption mechanism was an ion exchange. The development of this adsorbent holds significant promise for the extraction of rubidium and cesium from liquid resources. Full article
(This article belongs to the Special Issue Green and Efficient Separation and Extraction of Salt Lake Resources)
Show Figures

Figure 1

Back to TopTop