sensors-logo

Journal Browser

Journal Browser

Special Issue "Wearable Sensors for Biomechanics Applications"

A special issue of Sensors (ISSN 1424-8220). This special issue belongs to the section "Wearables".

Deadline for manuscript submissions: 20 July 2022 | Viewed by 10226

Special Issue Editor

Prof. Dr. Winson Lee
E-Mail Website
Guest Editor
School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong 2522, Australia
Interests: rehabilitation engineering; technology for elderly people; human movement; postural control; prosthetics; orthotics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The use of wearable sensors in measuring force and motions of human structures can potentially bring benefits to health care, sport, and well-being. Examples of wearable sensors for biomechanical measurements include accelerometers, gyroscopes, magnetometers, ultrasound, optical, nanomaterial-based, EMG, and force sensors.

This Special Issue focuses on applications of wearable sensors in these three areas:
Rehabilitation and gerontology
Sport performance and injury prevention
Risk assessment at work

Papers that look into developments, uses, and/or outcome measurement of wearable sensors in the above three areas are welcomed. Original research and review papers in these areas are encouraged.

Prof. Dr. Winson Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Wearable Sensors
  • Wearable Smart Devices
  • Accelerometers
  • Gyroscopes
  • Magnetometers
  • Ultrasound Optical
  • Nanomaterial-Based
  • EMG and force sensors
  • Exoskeletons
  • Soft Wearable robotics

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Events Detection of Anticipatory Postural Adjustments through a Wearable Accelerometer Sensor Is Comparable to That Measured by the Force Platform in Subjects with Parkinson’s Disease
Sensors 2022, 22(7), 2668; https://doi.org/10.3390/s22072668 - 30 Mar 2022
Viewed by 700
Abstract
Out-of-the-lab instrumented gait testing focuses on steady-state gait and usually does not include gait initiation (GI) measures. GI involves Anticipatory Postural Adjustments (APAs), which propel the center of mass (COM) forward and laterally before the first step. These movements are impaired in persons [...] Read more.
Out-of-the-lab instrumented gait testing focuses on steady-state gait and usually does not include gait initiation (GI) measures. GI involves Anticipatory Postural Adjustments (APAs), which propel the center of mass (COM) forward and laterally before the first step. These movements are impaired in persons with Parkinson’s disease (PD), contributing to their pathological gait. The use of a simple GI testing system, outside the lab, would allow improving gait rehabilitation of PD patients. Here, we evaluated the metrological quality of using a single inertial measurement unit for APA detection as compared with the use of a gold-standard system, i.e., the force platforms. Twenty-five PD and eight elderly subjects (ELD) were asked to initiate gait in response to auditory stimuli while wearing an IMU on the trunk. Temporal parameters (APA-Onset, Time-to-Toe-Off, Time-to-Heel-Strike, APA-Duration, Swing-Duration) extracted from the accelerometric data and force platforms were significantly correlated (mean(SD), r: 0.99(0.01), slope: 0.97(0.02)) showing a good level of agreement (LOA [s]: 0.04(0.01), CV [%]: 2.9(1.7)). PD showed longer APA-Duration compared to ELD ([s] 0.81(0.17) vs. 0.59(0.09) p < 0.01). APA parameters showed moderate correlation with the MDS-UPDRS Rigidity, Characterizing-FOG questionnaire and FAB-2 planning. The single IMU-based reconstruction algorithm was effective in measuring APAs timings in PD. The current work sets the stage for future developments of tele-rehabilitation and home-based exercises. Full article
(This article belongs to the Special Issue Wearable Sensors for Biomechanics Applications)
Show Figures

Figure 1

Communication
Gait Parameters in Healthy Preschool and School Children Assessed Using Wireless Inertial Sensor
Sensors 2021, 21(19), 6423; https://doi.org/10.3390/s21196423 - 26 Sep 2021
Cited by 1 | Viewed by 549
Abstract
Background: The objective gait assessment in children has become more popular. Basis parameters for comparison during the examination are advisable. Objectives: The study aim was to investigate the typical gait parameters of healthy preschool and school children, using a wireless inertial sensor as [...] Read more.
Background: The objective gait assessment in children has become more popular. Basis parameters for comparison during the examination are advisable. Objectives: The study aim was to investigate the typical gait parameters of healthy preschool and school children, using a wireless inertial sensor as the reference for atypical gait. The additional aim was to compare the specific gait parameters in the younger and older group of children. Methods: One hundred and sixty-one children’s gait parameters were evaluated by a G-Walk BTS G-SENSOR smart analyzer. The children were walking barefoot, at a self-selected speed, on a five-meter walkway, and they turned around and go back twice. Results: Age significantly influences most of the spatiotemporal parameters. The support phase becomes shorter with age. Accordingly, the swing phase becomes longer with age. The results also show that older children need shorter double support and have longer single support. Moreover, the pelvic tilt symmetry index is higher with increasing age. In each age division, the smallest variation in all gait parameters within the oldest group of examined children was observed. A comparison between the left and right side gait parameters shows the higher difference in boys than in girls. A significant difference was calculated in the pelvic obliquity symmetry index. Girls had significantly more symmetrical obliquity than boys. Conclusions: the research indicates the basic parameters of typical children’s gait, which may be a reference to atypical gait in the case of trauma or disability. Full article
(This article belongs to the Special Issue Wearable Sensors for Biomechanics Applications)
Show Figures

Figure 1

Article
Lower Back Injury Prevention and Sensitization of Hip Hinge with Neutral Spine Using Wearable Sensors during Lifting Exercises
Sensors 2021, 21(16), 5487; https://doi.org/10.3390/s21165487 - 14 Aug 2021
Cited by 1 | Viewed by 2131
Abstract
The popularization and industrialization of fitness over the past decade, with the rise of big box gyms and group classes, has reduced the quality of the basic formation and assessment of practitioners, which has increased the risk of injury. For most lifting exercises, [...] Read more.
The popularization and industrialization of fitness over the past decade, with the rise of big box gyms and group classes, has reduced the quality of the basic formation and assessment of practitioners, which has increased the risk of injury. For most lifting exercises, a universal recommendation is maintaining a neutral spine position. Otherwise, there is a risk of muscle injury or, even worse, of a herniated disc. Maintaining the spine in a neutral position during lifting exercises is difficult, as it requires good core stability, a good hip hinge and, above all, observation of the posture in order to keep it correct. For this reason, in this work the authors propose the prevention of lumbar injuries with two inertial measurement units. The relative rotation between two sensors was measured for 39 voluntary subjects during the performance of two lifting exercises: the American kettlebell swing and the deadlift. The accuracy of the measurements was evaluated, especially in the presence of metals and for fast movements, by comparing the obtained results with those from an optical motion capture system. Finally, in order to develop a tool for improving sport performance and preventing injury, the authors analyzed the recorded motions, seeking to identify the most relevant parameters for good and safe lifting execution. Full article
(This article belongs to the Special Issue Wearable Sensors for Biomechanics Applications)
Show Figures

Figure 1

Article
Reliability and Validity of the Polhemus Liberty System for Upper Body Segment and Joint Angular Kinematics of Elite Golfers
Sensors 2021, 21(13), 4330; https://doi.org/10.3390/s21134330 - 24 Jun 2021
Cited by 1 | Viewed by 717
Abstract
Golf swing analysis is common in both recreational and professional levels where players are searching for improvements in shot accuracy and distance. The use of motion analysis systems such as the portable Polhemus Liberty system is gaining interest by coaches and players; however, [...] Read more.
Golf swing analysis is common in both recreational and professional levels where players are searching for improvements in shot accuracy and distance. The use of motion analysis systems such as the portable Polhemus Liberty system is gaining interest by coaches and players; however, to date, no research has examined the usefulness of the Polhemus Liberty system for golf swing analysis. Therefore, the purpose of this study was to determine the reliability of the Polhemus Liberty system and validity compared to the VICON Nexus motion analysis system when assessing segment (pelvis and thorax) and joint (shoulder, elbow and wrist) angular kinematics during a golf swing at key events (address, top of backswing and impact). Fifteen elite amateur/professional golfers performed ten golf swing trials within specified bounds using their 5-iron club. Reliability was assessed using interclass coefficient, effect size and t-test statistics by all participants completing two separate testing sessions on separate days following the same experimental protocol. Validity was assessed using effect size, Pearson correlation and t-test statistics by comparing swings captured using both Polhemus Liberty and VICON Nexus concurrently. Results demonstrated no difference in ball outcome results using the Trackman launch monitor (P > 0.05) and that the Polhemus Liberty system was reliable across the two sessions for all segment (pelvis and thorax) and joint (lead shoulder (gleno-humeral joint), elbow and wrist) angular kinematics (P > 0.05). Validity analysis showed that the Polhemus Liberty system for the segments (pelvis and thorax) and joints (lead shoulder and wrist) were different compared to the VICON Nexus data at key events during the golf swing. Although validity could not be confirmed against VICON Nexus modeling, the Polhemus Liberty system may still be useful for golf swing analysis across training sessions. However, caution should be applied when comparing data from the system to published research data using different motion analysis methods. Full article
(This article belongs to the Special Issue Wearable Sensors for Biomechanics Applications)
Show Figures

Figure 1

Article
Validation of Plantar Pressure and Reaction Force Measured by Moticon Pressure Sensor Insoles on a Concept2 Rowing Ergometer
Sensors 2021, 21(7), 2418; https://doi.org/10.3390/s21072418 - 01 Apr 2021
Cited by 2 | Viewed by 1120
Abstract
The purpose of this study was to determine the reliability and validity of plantar pressure and reaction force measured using the Moticon and Pedar-x sensor insoles while rowing on a Concept2 ergometer. Nineteen participants performed four 500 m trials of ergometer rowing at [...] Read more.
The purpose of this study was to determine the reliability and validity of plantar pressure and reaction force measured using the Moticon and Pedar-x sensor insoles while rowing on a Concept2 ergometer. Nineteen participants performed four 500 m trials of ergometer rowing at 22–24 strokes/min; two trials wearing Moticon insoles and two wearing Pedar-x insoles in a randomised order. Moticon and Pedar-x insoles both showed moderate to strong test–retest reliability (ICC = 0.57–0.92) for mean and peak plantar pressure and reaction force. Paired t-test demonstrated a significant difference (p < 0.001) between Moticon and Pedar-x insoles, effect size showed a large bias (ES > 1.13), and Pearson’s correlation (r < 0.37) showed poor agreement for all plantar pressure and reaction force variables. Compared to Pedar-x, the Moticon insoles demonstrated poor validity, however, the Moticon insoles had strong reliability. Due to poor validity, caution should be used when considering Moticon insoles to assess changes in pressure and force reliably over time, across multiple trials or sessions. Moticon’s wireless and user-friendly application would be beneficial for assessing and monitoring biomechanical parameters in rowing if validity between measures of interest and Moticon’s results can be established. Full article
(This article belongs to the Special Issue Wearable Sensors for Biomechanics Applications)
Show Figures

Figure 1

Article
Using Different Combinations of Body-Mounted IMU Sensors to Estimate Speed of Horses—A Machine Learning Approach
Sensors 2021, 21(3), 798; https://doi.org/10.3390/s21030798 - 26 Jan 2021
Cited by 4 | Viewed by 1932
Abstract
Speed is an essential parameter in biomechanical analysis and general locomotion research. It is possible to estimate the speed using global positioning systems (GPS) or inertial measurement units (IMUs). However, GPS requires a consistent signal connection to satellites, and errors accumulate during IMU [...] Read more.
Speed is an essential parameter in biomechanical analysis and general locomotion research. It is possible to estimate the speed using global positioning systems (GPS) or inertial measurement units (IMUs). However, GPS requires a consistent signal connection to satellites, and errors accumulate during IMU signals integration. In an attempt to overcome these issues, we have investigated the possibility of estimating the horse speed by developing machine learning (ML) models using the signals from seven body-mounted IMUs. Since motion patterns extracted from IMU signals are different between breeds and gaits, we trained the models based on data from 40 Icelandic and Franches-Montagnes horses during walk, trot, tölt, pace, and canter. In addition, we studied the estimation accuracy between IMU locations on the body (sacrum, withers, head, and limbs). The models were evaluated per gait and were compared between ML algorithms and IMU location. The model yielded the highest estimation accuracy of speed (RMSE = 0.25 m/s) within equine and most of human speed estimation literature. In conclusion, highly accurate horse speed estimation models, independent of IMU(s) location on-body and gait, were developed using ML. Full article
(This article belongs to the Special Issue Wearable Sensors for Biomechanics Applications)
Show Figures

Figure 1

Article
Muscle Co-Activation around the Knee during Different Walking Speeds in Healthy Females
Sensors 2021, 21(3), 677; https://doi.org/10.3390/s21030677 - 20 Jan 2021
Cited by 3 | Viewed by 992
Abstract
The purpose of this study was to examine the changes in co-activation around the knee joint during different walking speeds in healthy females using the co-activation index. Ten healthy females (age: 21.20 ± 7.21 years, height: 164.00 ± 4.00 cm, mass: 60.60 ± [...] Read more.
The purpose of this study was to examine the changes in co-activation around the knee joint during different walking speeds in healthy females using the co-activation index. Ten healthy females (age: 21.20 ± 7.21 years, height: 164.00 ± 4.00 cm, mass: 60.60 ± 4.99 kg) participated in this study and performed three walking speeds (slow, normal, and fast). A Qualisys 11-camera motion analysis system sampling at a frequency of 200 Hz was synchronized with a Trigno EMG Wireless system operating at a 2000 Hz sampling frequency. A significant decrease in the co-activation index of thigh muscles was observed between the slow and fast, and between the normal and fast, walking speeds during all walking phases. A non-significant difference was observed between the slow and normal walking speeds during most walking phases, except the second double support phase, during which the difference was significant. A negative relationship was found between walking speed and the co-activation index of thigh muscles in all speeds during walking phases: first double support (r = −0.3386, p < 0.001), single support (r = −0.2144, p < 0.01), second double support (r = −0.4949, p < 0.001), and Swing (r = −0.1639, p < 0.05). In conclusion, the results indicated high variability of thigh muscle co-activation in healthy females during the different walking speeds, and a decrease in the co-activation of the thigh muscles with the increase of speed. Full article
(This article belongs to the Special Issue Wearable Sensors for Biomechanics Applications)
Show Figures

Figure 1

Article
Equimetrix Device: Criteria Based Validation and Reliability Analysis of the Center of Mass and Base of Support of a Human Postural Assessment System
Sensors 2021, 21(2), 374; https://doi.org/10.3390/s21020374 - 07 Jan 2021
Viewed by 1080
Abstract
Human postural control is a fundamental ability for static and dynamic tasks, especially in hiper- and hipo-functional populations, such as the elderly. The Equimetrix is a clinical device developed to assess both the base of support (BoS) and the center of mass (CoM) [...] Read more.
Human postural control is a fundamental ability for static and dynamic tasks, especially in hiper- and hipo-functional populations, such as the elderly. The Equimetrix is a clinical device developed to assess both the base of support (BoS) and the center of mass (CoM) dynamics, thus allowing their use as new evaluation and training tools. This study aims to perform a criteria based validation of Equimetrix by comparing the BoS and CoM data with gold-standard equipment. A motion capture system, force platform, and pressure mat were used to calculate the CoM, center of pressure (CoP) and BoS during bipedal, unipedal, feet together and full tandem stances. Results demonstrate an excellent reliability of Equimetrix in terms of spatial accuracy of the CoM, although over-estimating the CoM height. Differences were found when comparing Mean velocity Path with the CoM, but not with the CoP, indicating a lower reliability in time-based parameters. The Equimetrix presents a tendency to overestimate the BoS, with mixed reliability values, which may be related to the different size of sensing elements between the Equimetrix and the pressure sensing mat. These are encouraging results that should be further explored during dynamic tasks. Full article
(This article belongs to the Special Issue Wearable Sensors for Biomechanics Applications)
Show Figures

Figure 1

Back to TopTop