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Supplemental materials 

Overview 
Here we provide details for both our own IMU data processing and for each of the 

gait event identification methods included in our main paper. For details beyond what we 
provide here please refer to the original sources. Figures have been included showing the 
process each method uses to identify initial contact (IC) and terminal contact (TC) gait 
events. All data for these figures was taken from the same randomly selected trial (a 1.64 
m tall 62.37 kg female running 3.73 m/s on the ‘floor’ surface and contacting the force plate 
with a forefoot strike angle of -0.12 rad). Wherever possible, figures originally published 
with each method were digitized (https://apps.automeris.io/wpd/) and run through the 
code provided with this paper to ensure we could faithfully reproduce results (not in-
cluded here due to copyright). For clarity, we have standardized the original coordinate 
conventions used in each method to be consistent with the segment- and wearable-coor-
dinate systems (SCS and WCS) described briefly in our main paper (Fig. 3), described 
more fully in our IMU processing Supplement (below), and with ISB recommendations 
[50]. Finally, each method’s performance is individually reported here. Please note that 
figure axes and descriptions are consistent across all methods; consequently, the results 
for some methods may not be fully plotted if they exceed the axis range. Also note, the 
results figures are only fully described the first time they appear (Figure S2). 

Timing Constraints 
For several methods, novel timing constraints were added to facilitate pattern recog-

nition and exclude observations falling outside the values reported for steady-state run-
ning [1-9]. Based on these sources, we adopted a maximum step frequency of 4.75 Hz, 
stance times between 95 and 270 ms, and swing times between 200 and 600 ms. 

Common output 
Finally, for all methods, to prevent errors (e.g., empty IC and TC outputs, impossible 

patterns of results such as IC-IC-TC-IC, etc.) that were common to many methods (all ex-
cept: Mizrahi, Benson, Norris, Reenalda, and Whelan) and to ensure a common output, 
we implemented a function that took the raw IC, TC, and side output from each function 
and checked it to ensure: (1) gait events were identified (if a method was supposed to 
deliver both ICs and TCs, only paired gait events were accepted; i.e., no IC without TC), 
(2) gait event timings were unique and in temporal order, and (3) gait events followed a 
logical IC-TC-IC-TC pattern. 

Shank-mounted wearable methods 
 
Mizrahi method 

Developing and validating a gait-event identification method was not the primary 
focus of Mizrahi et al. [10]. The authors did, however, report identifying IC from the peak 
acceleration of a uniaxial accelerometer on the tibial tuberosity aligned with the longitu-
dinal axis of the tibia (𝑎ௐ஼ௌ,௬). The authors reported using an automated code that we 
attempted to replicate based on their paper. Our code finds maxima in y-axis acceleration 
(proximal-distal in the SCS or ~longitudinal in the WCS) with a minimum separation of 
~422 ms (based on the maximum step frequencies reported across previous studies) (Fig. 
S1). For results see Fig. S2. 
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Figure S1. Y-axis acceleration (proximal-distal in the SCS; 
~longitudinal in the WCS; dark blue line) maxima are 
found with a minimum separation of ~422 ms and selected 
as IC gait events (gold triangles). No TC identification. 

 

 
Figure S2. Results were calculated using the methods described in each coordinate system (calcu-
lated as described in part 8 of our IMU processing breakdown at the end of this Supplement). Re-
sults in the top row are for the wearable coordinate system (WCS), results in the middle row are for 
the segment coordinate system (SCS), and results in the bottom row are for a pseudo-global coordi-
nate system, the “tilt-corrected” coordinate system (TCCS). Reading left to right, in the first column 
the white horizontal line represents the mean percentage of trials per participant without any gait 
events recognized, dark blue represents ±95% confidence interval (±1.96 SEM) around the mean, 
light blue represents ±1 SD around the mean. Gray dots represent participants outside ±1 SD. No 
bars indicates that gait events were identified in every trial for every participant. In the second col-
umn IC error means (white bar), ±1 within-method SD (dark blue), and ±95% LOA (1.96 SD of errors; 
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light blue) are plotted. Gray dots represent trials falling outside the 95% LOA. A value of 0 indicates 
perfect agreement with the ground truth. Positive values indicate the IC was estimated later than 
the ground truth (after the force plate IC). Negative values indicate the IC was estimated earlier than 
the ground truth (before the force plate IC). In the third column TC error means (white bar), ±1 
within-method SD (dark blue), and ±95% LOA (1.96 SD of errors; light blue) are plotted. Gray dots 
represent trials falling outside the 95% LOA. A value of 0 indicates perfect agreement with the 
ground truth. Positive values indicate the TC was estimated later than the ground truth (after the 
force plate TC). Negative values indicate the TC was estimated earlier than the ground truth (before 
the force plate TC). In the fourth column mean absolute error in IC predicted by a mixed effects 
model. Plotted as a function of speed and foot strike angle. Darker blue values represent lower pre-
dicted mean absolute errors while brighter yellow values represent higher predicted mean absolute 
errors. In the fifth column mean absolute error in TC predicted by a mixed effects model. Plotted as 
a function of speed and foot strike angle. Darker blue values represent lower predicted mean abso-
lute errors while brighter yellow values represent higher predicted mean absolute errors. 

Mercer method 
Developing and validating a gait-event identification method was not the primary 

focus of Mercer et al. [11], however, they provided the first published details on a gait-
event identification method previously used by Shorten and Winslow [12], Hamill et al. 
[13], and Derrick et al. [14, 15]. We attempted to translate these details into an automated 
code. To identify IC, the authors reported placing an accelerometer on the anteromedial 
distal tibia and finding a local minimum immediately preceding a global maximum in 𝑎ௐ஼ௌ,௬ (Fig. S3A-C). To identify TC, they reported finding the “minimum after a second 
local maximum.” We found that small local maxima could generate results inconsistent 
with the figures presented in Mercer’s paper when looking for local maxima to identify 
TCs (indeed, their figure depicts the TC after three small local maxima). Thus, to exclude 
smaller local maxima, we added an additional constraint that only the four largest maxima 
in the window of interest would be considered. Results are shown in Fig. S4. 

 

 
Figure S3: (A) Y-axis acceleration (proximal-distal in the 
SCS or ~longitudinal in the WCS; dark blue line) maxima 
(dark blue triangles) are found with a minimum separation 
of ~422 ms. The signal is then low-pass filtered at 15 Hz 
(light blue line) and maxima are found in the filtered signal 
with no minimum separation criterion (light blue trian-
gles). The peak in the filtered signal closest to the peak in 
the original signal is selected as a peak of interest (red cir-
cle).  
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(B) Walking back from each peak of interest (light blue tri-
angles) the first point when the signal magnitude begins to 
increase is selected as an IC gait event (gold triangles) 

 

 
(C) The four largest maxima (red circles) are found be-
tween each peak of interest (light blue triangle) and its pro-
ceeding IC (gold triangle). Stepping forward from the sec-
ond maxima, the first point when the signal magnitude be-
gins to increase is selected as a TC gait event (red triangle). 



 

5 

 
Figure S4. See Figure S2 for description.       

Purcell method  
Purcell et al. [16] placed a tri-axial accelerometer on the anteromedial tibia. To define 

IC, the authors report using minima in 𝑎ௐ஼ௌ,௫ (as defined by the coordinate convention 
they report standardized to ours) that corresponds in time with a maxima in 𝑎ௐ஼ௌ,௥௘௦ . 
However, the data they present (and the method which we were successfully able to re-
produce) suggest that they misreported their coordinates and actually used minima in 𝑎ௐ஼ௌ,௫ (rather than maxima). To define TC, they take the average time stamp of local min-
ima in 𝑎ௐ஼ௌ,௫ and 𝑎ௐ஼ௌ,௭ (after correcting their coordinate system) (Fig. S5A-B). The 𝑎ௐ஼ௌ,௭ 
minima were not very pronounced; thus, to aid performance, we imposed a further con-
straint here that the window to search for these local minima should be between 20-60% 
of one IC to the next. Results are shown in Fig. S6. 
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Figure S5: (A) X-axis acceleration (anterior-posterior in 
SCS, ~direction of progression in WCS; dark blue line) min-
ima (dark blue triangles) are identified. Then, the resultant 
acceleration is calculated (light blue line) and peaks sepa-
rated by at least ~422 ms are identified (light blue trian-
gles). IC is defined as the x-axis minima closest to resultant 
maxima (gold triangle).  

 

 
(B) A window of interest (vertical black lines) is created 
from 20-60% of one IC to the proceeding IC (gold trian-
gles). The greatest magnitude x-axis minima in that win-
dow (blue circle) is found. All z-axis (medial-lateral in SCS, 
~right-left in WCS) minima within that window (green cir-
cles) are found. The z-axis minimum closest to the large x-
axis minimum (purple circle) is found. TC is defined as the 
midpoint between those two points (red triangle). 
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Figure S6: See Figure S2 for description.       

Aminian/O’Donovan method 
Aminian et al. [17] developed a method to identify gait events during walking that 

was later applied to running by O’Donovan et al. [18]. This method decomposes 𝜔ௌ஼ௌ,௓ 
using a series of wavelet multi-resolution analyses (MRA) that split the signal into high-
scale ‘approximation’ (low-frequency) and low-scale ‘detail’ (high-frequency) components. 
Aminian et al. report using two iterative 10-level 5th order Coiflet wavelet analyses. Given 
each level in MRA represents a frequency band that is a function of the sampling fre-
quency used during data collection, we first resample data to match Aminian et al.’s re-
ported 200 Hz sampling frequency (thus, yielding frequency bands that should be identi-
cal to theirs for each level; note, however, that Aminian et al. state their approximation 
“only considers” up to 36 Hz—consistent with a 72 Hz sampling frequency and not the 
reported 200 Hz sampling frequency—it is unclear where this discrepancy originates from 
but for the purposes of this paper we adhered to their stated sampling frequency and 
equations). After resampling, MRA is used to obtain a new signal approximation (“𝑠௔”) 
by summing details 1:9. Then, a second MRA is conducted on 𝑠௔ and two new signal ap-
proximations are created: (1) 𝐴ଶభ𝑠௔ െ 𝐴ଶవ𝑠௔ is designed to enhance the IC component by 
subtracting approximation 9 from approximation 1 and (2) 𝐴ଶయ𝑠௔ െ 𝐴ଶవ𝑠௔ is designed to 
enhance the TC component by subtracting approximation 9 from approximation 3. These 
new signal approximations are then searched for maxima/minima within specific time 
constraints. Results shown in Fig. S8. 
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Figure S7. Angular velocity about the z-axis (medial-lateral in the SCS, ~right in the WCS) is 
resampled to 200 Hz then decomposed with a 10-level 5th order Coiflet wavelet multi-resolution 
analysis (MRA) (A). Details 1 through 9 are summed to yield signal approximation 𝑠௔ (B). 𝑠௔ is then 
entered into a second 10-level 5th order Coiflet wavelet MRA (C). 
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Figure S7: (D) Two new approximations are created: 𝐴ଶభ𝑠௔ െ  𝐴ଶవ𝑠௔  (dark blue line) and 𝐴ଶయ𝑠௔ െ  𝐴ଶవ𝑠௔  (light 
blue line). Maxima separated by at least ~422 ms are found 
in each signal approximation (circles). These maxima ap-
proximately correspond to mid-swing.  

 

 
(E) A window of interest proceeding each maxima in 𝐴ଶభ𝑠௔ െ 𝐴ଶవ𝑠௔ (+250 to +2000 ms; solid vertical lines) is used 
to look for local minima corresponding to potential ICs 
(dark blue triangles). A window of interest preceding each 
maxima in 𝐴ଶయ𝑠௔ െ 𝐴ଶవ𝑠௔ (-2000 to -50 ms; dashed vertical 
lines) is used to look for local minima (light blue triangles) 
then the minimum values in the original signal 𝑠  (green 
line) within 0 to +75 ms are selected as potential TCs (green 
triangles). Starting with the IC closest to the mid-swing 
maxima in time iterate backwards in time through poten-
tial TCs. The first potential IC-potential TC pair that satis-
fies the condition 100 ms < (IC - TC) < 2500 ms is accepted. 
If no pairing meets this condition iterate forward in time to 
the next potential IC. Note, the windows of interest stipu-
lated by Arminian et al. for walking analysis were so large 
that they required the x-scale to be adjusted and extend be-
yond the data selected for analysis. 
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Figure S8: See Figure S2 for description.                 

Aminian/O’Donovan modified method 
As stated in the previous section, Aminian et al. [17] developed their method to iden-

tify gait events in walking. O’Donovan et al. [18] later applied this method to running but 
did not report any adjustments to the windows of interest based on the temporal differ-
ences between walking and running. Here we adjust the windows of interest to better 
correspond to swing times presented in the running literature. The approach is otherwise 
as described above. Results shown in Fig. S10. 



 

11 

 

 
Figure S9: New running-based windows of interest are de-
fined for the Aminian/O’Donovan approach. A window of 
interest proceeding each maxima in 𝐴ଶభ𝑠௔ െ 𝐴ଶవ𝑠௔ (+100 to 
+300 ms; solid vertical lines) is used to look for local min-
ima corresponding to potential ICs (dark blue triangles). A 
window of interest preceding each maxima in 𝐴ଶయ𝑠௔ െ 𝐴ଶవ𝑠௔ (-300 to -100 ms; dashed vertical lines) is used to look 
for local minima (light blue triangles) then the minimum 
values in the original signal 𝑠 (green line) within 0 to +75 
ms are selected as potential TCs (green triangles). Starting 
with the IC closest to the mid-swing maxima in time iterate 
backwards in time through potential TCs. The first poten-
tial IC-potential TC pair that satisfies the condition 200 ms 
< (IC - TC) < 600 ms is accepted. If no pairing meets this 
condition iterate forward in time to the next potential IC.  

 
Figure S10. See Figure S2 for description.      

Greene/McGrath method 
Greene et al. [19] developed a method for gait event identification during walking 

that was later adapted by McGrath et al. [20] to identify running gait events. McGrath et 
al. placed IMUs mid-shank to capture 𝜔ௐ஼ௌ,௭. Data were low-pass filtered with a 5 Hz 5th 
order Butterworth filter then thresholds calculated based on the data’s properties were 
used to determine IC and TC. Finally, the sequence and temporal spacing of gait events 
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was checked to ensure they were logical (i.e., must follow IC-TC-IC-TC pattern). Results 
are shown in Fig. S12. 

 𝑡ℎଵ ൌ 0.6 ∗ 𝑚𝑎𝑥ሺ𝜔ௐ஼ௌ,௭ሻ 
 𝑡ℎଶ ൌ  0.8 ∗ 1𝑁 ෍ሺ𝜔ௐ஼ௌ,௭,௜ ൐ 𝜔ௐ஼ௌ,௭ሻே

௜ୀଵ  

 𝑡ℎଷ ൌ  0.8 ∗ อ1𝑁 ෍ሺ𝜔ௐ஼ௌ,௭,௜ ൏ 𝜔ௐ஼ௌ,௭ሻே
௜ୀଵ อ 

 𝑡ℎସ ൌ  0.8 ∗ 1𝑁 ෍ሺ𝜔ௐ஼ௌ,௭,௜ ൏ 𝜔ௐ஼ௌ,௭ሻே
௜ୀଵ  

 𝑡ℎହ ൌ  𝜔ഥௐ஼ௌ,௭ 𝑡ℎ଺ ൌ  2 ∗ 𝑡ℎ3 
 

 

 
Figure S11: (A) Angular velocity about the z-axis (medial-
lateral in the SCS, ~right in the WCS; dark blue line) is fil-
tered with a 5-Hz  5th order low-pass Butterworth filter. 
Maxima separated by at least 𝑡ଵ  (500 ms) are identified 
(dark blue circles). Any identified maximum without a 
preceding minimum (light blue circles) at least 𝑡ℎଵ below 
the maximum (dashed lines) or with a value below 𝑡ℎଶ 
(solid line) is discarded.  
 

 

 
(B) Iterating backwards through the remaining maxima 
(dark blue circle) proceeding minima are identified as po-
tential ICs (dark blue triangle). Potential ICs are rejected 
if their preceding maxima (light blue circle) is not at least 𝑡ℎଷ greater than their magnitude (dashed light blue line) 
or if their magnitude is 𝑡ℎହ or greater (dashed dark blue 
line). The potential IC satisfying these conditions and clos-
est in time to the maxima is labeled as the IC. 
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(C) Similarly, minima preceding the maxima are identi-
fied as potential TCs (dark blue triangles). Potential TCs 
are rejected if their magnitudes are 𝑡ℎସ or greater (dashed 
dark blue line) or their proceeding maxima (light blue cir-
cle) is not 𝑡ℎ଺ greater than the potential TC (dashed light 
blue line; note: Greene et al. stipulate this threshold ap-
plies to the preceding maximum; however, we found that 
maxima preceding TCs rarely meet this condition—in-
cluding on Greene et al.’s own data digitized via 
https://apps.automeris.io/wpd/—thus, we believe this 
was a typo and that this condition is intended to be ap-
plied to proceeding maxima). The timing and sequence of 
events is then checked to ensure events always alternate 
between IC and TC, ICs and their proceeding TCs occur 
within 2500 ms of each other, and TCs and their proceed-
ing ICs occur within 7500 ms of each other. 

 
Figure S12. See Figure S2 for description.      

Greene/McGrath modified method 
As stated in the previous section, Greene et al. [19] developed their method to iden-

tify gait events in walking. McGrath et al. [20] later applied this method to running but 
did not report any adjustments to the algorithm based on the temporal differences be-
tween walking and running. Here we adjust the algorithm to better correspond to the 
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timing between gait events presented in the running literature. The approach is otherwise 
as described above. Results are shown in Fig. S13. 

 
Figure S13: See Figure S2 for description.      

Sinclair method 
Sinclair et al. [21] placed a tri-accelerometer on the anteromedial tibia and used 𝑎ௐ஼ௌ,௒ 

to identify IC and TC gait events. Data were low-pass filtered then maxima in the ~longi-
tudinal acceleration were identified. IC was defined as the zero-crossing point preceding 
each maxima while TC was defined as a plateau following the largest local maximum be-
tween longitudinal maxima. Results are shown in Fig. S15. 
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Figure S14: (A) Y-axis acceleration (proximal-distal in the 
SCS; ~longitudinal in the WCS; blue line) is filtered with a 
4th-order 60-Hz low-pass Butterworth. Maxima separated 
by at least ~422 ms are identified (blue circles). Walking 
back from each maxima, the first zero-crossing point fol-
lowed by 20 ms of positive data is defined as the IC.  

 

 
(B) To identify TC, a local maximum (light blue circle) is 
found between pairs of maxima. Data between this local 
maximum and the proceeding y-axis maximum is differen-
tiated and portions with where the magnitude is decreas-
ing by less than 2% of the previous frame’s magnitude per 
second are selected (gray shading). TC is defined as the 
first frame of the selection occurring earliest in time with a 
duration of at least ~5 ms. 
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Figure S15. See Figure S2 for description.      

Whelan method 
Whelan et al. [22] used 𝑎ௐ஼ௌ,௑ from a triaxial accelerometer placed on the tibialis an-

terior (anteromedial on the midshaft of the tibia) to identify IC events in sprinters running 
at up to 50% of their maximum effort. Data were first filtered using a 10 Hz low-pass 
Butterworth filter (order not reported; we assumed 4th). Then they reported using “peak 
acceleration” to define IC. Their figures, however, suggest that they defined IC using a 
local maximum immediately preceding a larger maximum. We developed automated 
code based on their figure. Results are shown in Fig. S17. 
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Figure S16: X-axis acceleration (anterior-posterior in the 
LCS; ~direction of progression in the WCS) was filtered us-
ing a 4th order 10 Hz low-pass Butterworth filter (dark blue 
line). Maxima were then found in the signal (we added a 
constraint that they must be separated by at least ~422 ms) 
(dark blue circles). The minimum value between succes-
sive maxima was then found (dark blue squares). Finally, 
a local maximum between the minimum and it’s proceed-
ing maximum was found and labelled as the IC (yellow tri-
angles). TC was not identified using this method. 

 
Figure S17. See Figure S2 for description.      

Norris method. 
Norris et al. [23] proposed a running gait event identification method where 𝑎ௐ஼ௌ,௓ 

from a tri-axial accelerometer placed on the anteromedial distal tibia were filtered with a 
2 Hz 2nd order low-pass Butterworth filter and a zero-crossing was used to identify IC. 
Results are shown in Fig. S19. 
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Figure S18: Z-axis acceleration (medial-lateral in the SCS; 
~right in the WCS; light blue line) is filtered with a 2nd-or-
der 2 Hz Butterworth filter (dark blue line). IC is defined 
as any positive zero-crossing point. No TC definition is 
provided. 

 
Figure S19: See Figure S2 for description.      

Schmidt method.  
Schmidt et al. [24] developed a gait event identification method for sprinting. It 

should be noted that this method was not developed with, or intended for, use across a 
broad range of running speeds. To identify IC and TC events, Schmidt et al. placed a tri-
axial IMU on the distal lateral tibia and identified points in 𝑎ௐ஼ௌ,௒ and 𝜔ௐ஼ௌ,௓ that met 



 

19 

user-defined thresholds. Given our focus on unsupervised methods, however, we adapted 
this code to use default thresholds. We report only the unsupervised results here, it is 
likely that results would improve with supervision. Results are shown in Fig. S21. 

 

 
Figure S20: (A) Find the global minimum in angular veloc-
ity about the z-axis (medial-lateral in SCS; ~right in WCS; 
dark blue line). Then, walk through each frame of data and 
find the local minimum in angular velocity across the next 
100 ms and the differential in angular velocity (angular ac-
celeration; light blue line) for the next 50 ms. If the local 
minimum is equal to the global minimum or all angular 
accelerations are negative and the linear acceleration in the 
y-axis (proximal-distal in the SCS; ~longitudinal in the 
WCS; green line; B) exceeds a critical threshold (5 g or user-
defined; dashed black line) then flag the current frame as a 
point of interest (In the example data, a single frame meets 
these criteria—the global minimum in angular velocity 
about the y-axis; dark blue circle).  

 

 
(B) For each point of interest, find the maximum in y-axis 
acceleration occurring between 20 ms before to 100 ms af-
ter the point of interest (green square). Then, find the y-axis 
acceleration minimum occurring between 20 ms before the 
point of interest to the y-axis acceleration maximum (green 
diamond). If the minimum occurs after the point of interest 
label it as the IC; otherwise, label the point of interest as the 
IC (In this case, the point of interest was labeled as the IC; 
dark blue triangle). 

 

 
(C) Next, look through all ICs. Within a 150 ms (or user 
defined) time window starting 90 ms (or user defined) after 
the IC (vertical black lines) find the minimum angular ve-
locity (dark blue circle). 
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(D) Starting from this minimum, within a ~50 ms window 
(black vertical lines) and find the minimum y-axis acceler-
ation (in this case, the same frame as the minimum angular 
velocity from the previous step). Label this as the TC (red 
triangle). If multiple estimated timings are obtained for a 
single gait event take the mean value. 

 
Figure S21. See Figure S2 for description.      

Aubol method. 
Aubol et al. [25] used 𝑎ௐ஼ௌ,௥௘௦௨௟௧௔௡௧ from a triaxial accelerometer mounted on the an-

teromedial distal tibia to estimate IC. First, each axis’ acceleration was filtered with a 70-
Hz 4th-order low-pass Butterworth filter. Then features of resultant acceleration and jerk 
were used to identify IC. Results are shown in Fig. S23. 
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Figure S22: Tri-axial accelerations were filtered using a 70-
Hz 4th order low-pass Butterworth filter and used to calcu-
late resultant acceleration (dark blue line) and jerk (light 
blue line). Maxima in the resultant acceleration separated 
by at least ~422 ms were identified (dark blue circles; the 
timing constraint was a novel constraint we introduced). 
Next, maxima in the resultant jerk were identified, how-
ever, only maxima within ~150 ms of a resultant accelera-
tion maximum were retained (light blue circles). Accelera-
tion minima with a prominence of at least 0.2*the magni-
tude of the third largest resultant acceleration peak were 
found (dark blue diamonds). Any minimum with a result-
ant acceleration peak occurring in the preceding ~25 ms is 
eliminated. Looking between pairs of subsequent resultant 
acceleration maxima (dark blue circles), the earliest occur-
ring minimum is labeled as the IC. 

 
Figure S23. See Figure S2 for description.      

Fadillioglu method.  
Fadillioglu et al. [26] aimed to create a method capable of identifying gait events dur-

ing both walking and running. To implement this method, Fadillioglu et al. placed a uni-
axial gyroscope on the lateral distal tibia to capture 𝜔ௐ஼ௌ,௓ . The signal was low-pass 
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filtered then midswing peaks were identified. A complementary signal was created by 
subtracting the filtered signal from the original signal and then features of this comple-
mentary signal were used to identify IC and TC. Results are shown in Fig. S25. 

 

 
Figure S24: (A) Angular velocity about the x-axis (medial-
lateral in the SCS and ~right in the WCS; dark blue line) is 
filtered with a 15 Hz 4th order low-pass Butterworth filter. 
Maxima with a magnitude of at least 4.63 rad/s and with 
a minimum separation of at least ~333 ms are identified as 
midswing peaks (dark blue circles). The signal is then 
detrended (light blue line) and for each midswing peak, 
the first zero-crossing following the peak is found and la-
belled as the IC (yellow triangles). Next, for each sequen-
tial pair of midswing peaks, the minimum value in the 
non-detrended signal (dark blue square) is found within a 
window from halfway between the peaks (dark blue dia-
mond) to the second peak + 0.1*the time between the 
peaks.  

 

 
(B) Next, a complementary signal is created by subtracting 
the non-detrended filtered angular velocity from the un-
filtered angular velocity. The complementary signal is 
low-pass filtered with a 2nd order 10-Hz Butterworth filter. 
A window of interest is defined based on the time between 
sequential midswing maxima: For times less than ~1000 
ms (as in the example where the time is ~690 ms), TC (red 
triangle) is defined as the maximum complementary sig-
nal within a search window that starts halfway between 
midswing maxima (dark blue diamond) and ends at the 
negative peak (dark blue square). For times greater than 
or equal to ~1000 ms, TC is defined as the minimum com-
plementary signal within a window starting halfway be-
tween midswing peaks and ending at the negative peak + 
0.1*the time between the peaks. 
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Figure S25. See Figure S2 for description.      

Bach method.  
Bach et al. [27] placed a tri-axial accelerometer on the anteromedial proximal tibia. 

They entered acceleration data into a principal component model and retained the princi-
pal component explaining the most variance for further analysis. The PC was normalized 
to its standard deviation and filtered and integrated to obtain velocity and position. Each 
signal was then entered into a machine learning algorithm and trained to estimate ground 
reaction forces. Estimated ground reaction forces were then used to identify IC and TC 
events. Results are shown in Fig. S27. 
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Figure S26: First, tri-axial acceleration data are resampled to match Bach et al.’s original 
sampling frequency (A-C) (the Echo State Network was trained on data collected at ~142.9 
Hz and data collected at higher frequencies may have signal features that are novel to the 
network and degrade performance). Next, accelerations are entered into a Principal Com-
ponent Analysis and the first component (explaining the most variance in the data) is re-
tained (D). The principal component “acceleration” is then normalized to its standard de-
viation and integrated to find principal component “velocity.” The principal component 
velocity is high-pass filtered with a 2nd order 1-Hz Butterworth filter (E) then integrated to 
obtain principal component “position.” The principal component position is then filtered 
using the same parameters (F). Principal component acceleration, velocity, and position 
signals are entered into an Echo State Network that has been previously trained using 
Bach et al.’s published data (G) yielding estimated ground reaction forces (H) that are 
used to define IC and TC events (yellow and red triangles). (In this example, it appears 
the Echo State Network has almost captured the shape and location of four distinct stances 
in the ground reaction force signal, however, these distinct stances are separated by noise 
and large troughs that interfere with the method’s ability to accurately identify IC and TC 
events). 
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Figure S27. See Figure S2 for description.      

Bach modified method 
We also provide a modified version of the Bach et al. method [27]. This version ad-

dresses the large amount of negative noise we observed between the vGRF waveforms by 
zeroing out any vGRF values below zero then multiplying the vGRF by negative one be-
fore feeding it into Bach et al.’s gait event estimation algorithm (to cancel out an unex-
plained negative one multiplication that method performs). Results are shown in Fig. S28. 
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Figure S28. See Figure S2 for description.      

Lower back-mounted wearable methods 
Auvinet method.  

Auvinet et al. [28] identified specific features associated with gait events in the signal 
of a tri-axial accelerometer placed on the mid-sagittal lumbar spine. Based on their simul-
taneous recording of acceleration and video data they identified IC as the start of a large 
peak in 𝑎ௐ஼ௌ,௒ co-occurring with the start of a deep minima in the 𝑎ௐ஼ௌ,௑. TC was identi-
fied as the end of the peak in 𝑎ௐ஼ௌ,௒. Right and left side were also identifiable based on 𝑎ௐ஼ௌ,௓. We developed a novel automated code to identify gait events based on these fea-
tures. Results are shown in Fig. S30. 
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Figure S29: Identify y-axis (proximal-distal in the SCS, 
~longitudinal in the WCS; dark blue line) maxima  sepa-
rated by at least ~422 ms (dark blue circles). Then look for 
the minimum value between successive maxima (dark blue 
squares). Next, in the x-axis acceleration (anterior-poste-
rior in the SCS, ~direction of progression in the WCS; light 
blue line) find minima (light blue circles) occurring be-
tween the y-axis minimum and its proceeding maximum. 
Then, walk back until values start decreasing (light blue 
squares). Define IC (yellow triangles) as the average frame 
between the points where y-axis minimum and where x-
axis acceleration started decreasing. To identify TC  (red 
triangles), look for the first frame following each y-axis 
maximum where y-axis acceleration magnitude falls below 
-1 g. Finally, to determine side, take the mean value of the 
z-axis acceleration (medial-lateral in ~SCS, ~right in WCS) 
in a window extending ~10 ms to each side of the IC (gray 
bars). If the magnitude is less than 0, call it a left stance. If 
the magnitude is more than 0, call it a right stance. 

 
Figure S30. See Figure S2 for description.      

Lee method.  
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Lee et al. [29] placed an IMU with tri-axial accelerometer on the sacrum. They iden-
tified IC and TC as maxima in 𝑎ௐ஼ௌ,௑ and used 𝑎ௐ஼ௌ,௓ to identify side. Results are shown 
in Fig. S32. 

 

 
Figure S31: To identify IC, find minima in the x-axis accel-
eration (anterior-posterior in SCS, ~direction of progres-
sion in WCS) separated by at least ~211 ms. Label this point 
the IC (gold triangles). Look from one IC plus ~85 ms to the 
proceeding IC and find a secondary x-axis minima. Label 
this point the TC (red triangles). To identify stance side, 
low-pass filter z-axis accelerations (medial-lateral in SCS, 
~right in WCS) with a 10-Hz 4th order Butterworth filter. 
Then, looking between successive IC and TC events, find 
positive and negative peaks. If the absolute value of the 
negative peak is greater label the stance as left. If the posi-
tive peak is greater label the stance as a right. 

 
Figure S32. See Figure S2 for description.      

Wixted method.  
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To characterize acceleration signals related to gait events, Wixted et al. [30] simulta-
neously recorded accelerations from L3-L4 and pressures from in-shoe insoles. They ob-
served that IC occurred around the time of a negative peak in 𝑎ௐ஼ௌ,௑ (similar to Lee et al. 
[29]) while TC occurred around the time of a negative zero-crossing in 𝑎ௐ஼ௌ,௒ (similar to 
Auvinet et al. [28]). Results are shown in Fig. S34. 

 

 
Figure S33: To identify IC, find negative peaks in the x-axis 
acceleration (anterior-posterior in SCS, ~direction of pro-
gression in WCS; dark blue line) separated by at least ~211 
ms. Label these points the ICs (gold triangles). Starting ~ 85 
ms after each IC, find the first y-axis acceleration value 
(proximal-distal in the SCS, ~vertical in the WCS; light blue 
line) that goes below 0. Label this point the TC (red trian-
gles). 

 

 
Figure S34. See Figure S2 for description.      
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Bergamini method.  
Bergamini et al. [31] placed a tri-axial IMU on the lumbar spine and used Luo et al.’s 

wavelet-mediated differentiation technique [32] to double differentiate 𝜔ௐ஼ௌ,௥௘௦௨௟௧௔௡௧. Pos-
itive peaks in the double differentiated signal are used to define IC while minima are used 
to define TC. Results are shown in Fig. S36. 

 

 
Figure S35: Angular velocity is resampled to 200 Hz, 
matching Bergamini et al.’s original paper. Then resultant 
angular velocity is calculated and double differentiated us-
ing 4-level quadratic spline discrete wavelet differentiation 
as described by Luo et al. [32] (dark blue line). Positive 
peaks separated by at least ~211 ms are found in this new 
angular jerk signal and are labelled as IC (yellow triangles). 
Minima between each successive pair of positive peaks are 
found and labelled as TCs (red triangles). 

 
Figure S36. See Figure S2 for description.      
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Benson method.  
Benson et al. [33] provide several well-documented functions to identify gait events 

from acceleration profiles of wearables mounted on the foot or sacrum. Here, we’ve min-
imally adapted their sacrum function to work with the same inputs and provide same 
outputs as other methods in this package. Results are shown in Fig. S38. 

 

 
Figure S37: (A) First, accelerations are low-pass filtered 
with a 10-Hz 4th order Butterworth filter. Then positive 
peaks separated by at least ~250 ms are found in the y-axis 
acceleration (proximal-distal in the SCS, ~vertical in the 
WCS; dark blue line).  
 

 

 
(B) Next, find negative x-axis (anterior-posterior in the 
SCS, ~direction of progression in the WCS; light blue line) 
acceleration peaks between each pair of successive y-axis 
peaks (vertical black lines). If there are multiple negative x-
axis peaks, then rank them 1…n by both magnitude (larg-
est to smallest) and by timing (latest to earliest). IC (yellow 
triangle) is defined as the peak with the lowest mean mag-
nitude and timing ranking. If there is a tie in mean rank-
ings, the later peak is accepted as IC. Then, look from the 
preceding y-axis peak to IC - ~100 ms and accept the latest 
occurring negative x-axis peak as the TC (red triangle). 
Note, if no negative x-axis peaks can be identified, find the 
x-axis minimum and label it as the IC. Then find the x-axis 
maximum between the preceding y-axis peak and the IC. 
Find the peak x-axis jerk between the x-axis maximum and 
the IC.  

 

 
(C) To identify stance side, find the largest positive (green 
square) and negative (green diamond) peaks in the z-axis 
acceleration (medial-lateral in the SCS, ~right in the WCS; 
green line) during each stance (vertical black lines). If there 
is no positive (rightward) peak, then set as a left stance 
(and vice versa). If both positive and negative peaks exist, 
if the positive peak is closer to TC than to the negative 
peak, set as a left step; otherwise, if the negative peak oc-
curs within ~15 ms of the IC, find a new negative peak be-
tween the current negative peak and the TC; otherwise, set 
as a left stance. 
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Figure S38. See Figure S2 for description.      

Reenalda method. 
Reenalda et al. [34] placed an IMU on runners while they ran a treadmill using dif-

ferent foot strike patterns. They defined IC as the peak downward velocity of the pelvis 
by integrating 𝑎ீ஼ௌ,௒ (obtained using proprietary algorithms provided by the IMU manu-
facturer). Results are shown in Fig. S40. 

 

 
Figure S39: y-axis acceleration (vertical in the GCS, proxi-
mal-distal in the SCS, and ~vertical in the WCS) is inte-
grated to obtain y-axis velocity. Negative peaks are found 
and labelled as IC. We added an additional constraint that 
these peaks must be separated by at least ~211 ms. No 
method is described to determine TC or stance side. 
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Figure S40. See Figure S2 for description.           

IMU data processing 

 An overview of our IMU data processing is provided in the main text. Here, we ex-
pand on those processing details. After collecting raw data from each IMU, data were      
downloaded and processed offline using the following steps: (1) Calibration, (2) Quiet 
period identification, (3) Bias removal, (4) Saturation correction, (5) Low-pass filtering, 
(6) Drift correction, (7) Orientation estimation and gravity subtraction, and (8) Coordi-
nate system transformation. After these processing steps each of the 642 trials we ana-
lyzed was segmented using the speed gate signals (to include data between the times 
when the participant crossed the gate 2.5 m before force plate center and the gate 2.5 m 
after force plate center) and entered into each of the 21 individual methods as an n × 7 
matrix (with n rows representing the number of frames and the 7 columns representing 
time stamps, 3 acceleration axes, and 3 angular velocity axes). This resulted in a total of 
642 trials × 21 methods = 13482 possible events for comparison to the corresponding 642 
ground truth force plate events for each IC, TC, and stance side. 

1. Calibration  
All IMU data collected during this experiment were      corrected with IMU-specific 

calibration matrices. These matrices were calculated by conducting a calibration proce-
dure that ensured each IMU accurately expressed accelerations and angular velocities in 
an orthogonal coordinate system oriented square to the IMU housing.  
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Each IMU was secured to a centrifuge (ClearPath MCVC, Teknic, Victor, USA) with 
custom 3-D printed jigs (SOLIDWORKS 2019, Dassault Systèmes, Vélizy-Villacoublay, 
France) and calibrated in 6 orientations at 16 known accelerations (from 0 - 41.42 g where 
1 g = 9.8 m/s2 [35, 36]) and angular velocities (from 0 - 78.54 rad/s). Adapting methods from 
Coolbaugh et al. [37], known data (K) from the centrifuge and measured data (M) from 
the IMU were used to calculate 3 × 7 calibration matrices for each IMU (C; 3 signed mag-
nitude terms, 3 absolute magnitude terms, and one bias term per axis) and quantify sensor 
accuracy with a hold-back procedure after subtracting out biases observed during a quiet 
period (B).  

 
C*(M + B) = K  
      
One potential limitation of this procedure is that it treats each triaxial sensor inde-

pendently (primary accelerometer, secondary accelerometer, and gyroscope) and assumes 
their values do not affect each other. This assumption was tested while piloting this cali-
bration procedure by quantifying inter-sensor dependencies between the primary accel-
erometer and gyroscope and between the secondary accelerometer and gyroscope. Ob-
served dependencies were negligible and independent sensor calibration matrices yielded 
the best results; thus, we felt confident using this approach (which avoids the indetermi-
nacy of the primary and secondary accelerometer having the same K values). 

After calibration, IMU primary accelerometer errors were ≤ 0.01±0.04 g, secondary 
accelerometer errors were ≤ 0.05±0.07 g, and gyroscope errors were ≤ 0.01±0.01 rad/s. 

 

Figure S41. Left: : An IMU in it’s 3-D printed housing. Computer-aided design software was used 
to ensure IMUs were friction fit square to their housing. Middle: Two IMUs in their 3-D printed 
housings mounted on the centrifuge.     IMUs were checked for square with an engineer’s square 
and level with a bullseye level. Right: Example of measured triaxial accelerations for the second-
ary accelerometer (M). The 16 accelerations being applied to the IMU in each of 6 orientations cor-
respond to known (K) values from the centrifuge. Accelerations between each orientation corre-
spond to the IMU being repositioned on the centrifuge and checked for square and level. 

2. Quiet period identification 

Quiet periods were identified throughout data collection (e.g., participant resting, 
participant preparing at the start of the runway, participant standing while receiving 
instruction) and used to periodically check for changes in bias (as bias can vary with bat-
tery life and temperature) and reset orientation algorithms (as orientation estimates are 
prone to drift over prolonged periods; discussed further below). These quiet periods 
were defined as any period where… 𝜔௥௘௦௨௟௧௔௡௧ ൏ 0.5 𝑟𝑎𝑑/𝑠 and 
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𝑗௥௘௦௨௟௧௔௡௧ ൏ 0.01 𝑚/𝑠ଷ  

…for at least 100 ms. 

 

Figure S42. Top: Resultant angular velocity (blue) and jerk (orange) at the sacrum across an entire 
data collection for the randomly selected example participant. Bottom: Zoomed in to show quiet 
periods (QP) where resultant angular velocities are < 0.5 rad/s and resultant jerks are < 0.01 m/s3 
for at least 100 ms. Thresholds noted with the dashed horizontal line. 

3. Bias removal 

When the IMU is quiet, we know that it is not accelerating or rotating and thus, the 
only thing loading the axes should be the gravity vector. Based on this knowledge we 
can create a temporary inertial coordinate system based on gravity: 

 𝑌 ൌ ∑ ௔೎ೌ೗೔್ೝೌ೟೐೏ ೗ೌೞ೟ ೜ೠ೔೐೟ ೑ೝೌ೘೐೑೔ೝೞ೟ ೜ೠ೔೐೟ ೑ೝೌ೘೐௡೜ೠ೔೐೟ ೑ೝೌ೘೐ೞ       

We can express Y as a unit vector, then make X and Z orthogonal unit vectors (with arbi-
trary sense). Using these vectors, we can create a temporary rotation matrix that will 
align our data with gravity: 

 𝑅௧௘௠௣ ൌ ൥𝑋𝑌𝑍൩      

We can then express our data in this temporary inertial coordinate system (and given 
our calibration we know that the axes of the accelerometer and gyroscope are exactly 
aligned so the same rotation matrix can be used for both): 

 𝑎௧௘௠௣ ൌ 𝑅௧௘௠௣ ∗ 𝑎௖௔௟௜௕௥௔௧௘ௗ 
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Given the IMU is quiet, in every frame 𝑎௧௘௠௣ and 𝜔௧௘௠௣ should now equal [0 1 0] g and 
[0 0 0] rad/s, respectively. Thus, we can calculate bias (B) in acceleration and angular ve-
locity as the average deviation from those values across the quiet period: 

 𝐵௔ ൌ ∑ ሺ௔೟೐೘೛ ିሾ଴ ଵ ଴ሿሻ೗ೌೞ೟ ೜ೠ೔೐೟ ೑ೝೌ೘೐೑೔ೝೞ೟ ೜ೠ೔೐೟ ೑ೝೌ೘೐௡೜ೠ೔೐೟ ೑ೝೌ೘೐ೞ  

We can then remove bias and re-express our data in its original coordinates: 
 

     𝑎ௗ௘௕௜௔௦ ൌ 𝑎௖௔௟௜௕௥௔௧௘ௗ െ 𝑅௧௘௠௣ିଵ 𝐵௔      

 

Figure S43. Top: Uncorrected resultant sacral acceleration (blue) and de-biased resultant sacral 
acceleration (orange) across the entire data collection for the randomly selected participant. Bot-
tom: Zoomed in to show that uncorrected resultant acceleration does not equal 1 g during quiet 
periods while de-biased acceleration equals exactly 1 g. 

4. Saturation correction 

Our IMU contained two tri-axial accelerometers with different ranges. The primary 
accelerometer had a range of 16 g while the secondary accelerometer had a range of 100 
g. Although 16 g is a large enough range to capture the majority of accelerations at the 
tibia and sacrum during running, we wanted to ensure that saturation did not occur, 
particularly at the tibia [38]. Thus, we used a threshold of 15.5 g and replaced any value 
above this threshold in our primary accelerometer with the corresponding frame from 
our secondary accelerometer (these values were highly correlated across the ±16 g range 
they could both measure). Secondary accelerometer data were then discarded. 
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Figure S44. Left: Tibia ~longitudinal axis accelerations from primary accelerometer (orange) and 
secondary accelerometer (blue) across the entire data collection for the example participant. The 
horizontal black line indicates data outside the primary accelerometer’s range (defined as |𝑎| > 15.5 
g). Right: Secondary accelerometer measurements plotted against primary accelerometer measure-
ments for each axis (different colors). Black dashed diagonal line indicates perfect agreement. Here 
correlations between each axis ranged from r = 0.82 - 0.96. In general, correlations across the 
ranges shared between primary and secondary accelerometers were ≥ 0.90.  

5. Low pass filtering 

Next, accelerations and angular velocities were filtered with a 4th order 50 Hz low-
pass Butterworth filter. 

 

Figure S45. Top: Worst-case example of unfiltered (blue) and filtered (orange) ~longitudinal tibial 
acceleration (that experienced saturation and is now composed of data from the primary and sec-
ondary accelerometers). Data is taken from a single trial from the example participant. Bottom: 
Zoomed in on ~one step to better visualize differences between filtered and unfiltered signal. Filter 
parameters were chosen to qualitatively balance the preservation of major signal features (particu-
larly peak magnitudes and locations) with the removal of high-frequency noise. 
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6. Drift correction 

Angular velocity measured by IMUs is prone to drift. This drift makes it difficult to 
integrate angular velocities and calculate the orientation of an IMU in space. Several sen-
sor fusion algorithms have been developed to correct this drift including Kalman filters 
[39], Mahoney filters [40], and Madgwick filters [41]. We explored the use of each of 
these filters and found that converting our data to quaternion representation and enter-
ing it into a Madgwick filter (with beta set to 0.05 and no magnetometer fusion due to 
the amount of magnetic interference in our lab) was the most successful in eliminating 
drift in a “worst case” recreation of our experimental conditions (an 80 minute data cap-
ture with extreme angular rotations and accelerations and no quiet period corrections 
yielded 1.66 rad rotation error). The code we used to execute the Madgwick filter is 
available from x-io at: 

https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/ 

And from MATLAB at: 

https://www.mathworks.com/products/sensor-fusion-and-tracking.html 

 

Figure S46. Top: Uncorrected angular velocity about the ~longitudinal axis of the sacrum (blue) 
for the entire data collection of the example participant. Middle: Difference between uncorrected 
and Madgwick filter-estimated angular velocities (orange). Bottom: Madgwick filter-estimated 
angular velocity about the ~longitudinal axis of the sacrum (yellow) 

7. Orientation estimation and gravity subtraction 

 After drift-correcting angular velocity with the Madgwick algorithm, we create a ro-
tation matrix based on the loading of gravity during quiet periods (see 3 above) then 
used it to create a “tilt-corrected” coordinate system (see 8 below). Then, between each 
quiet period, we used angular velocity to calculate changes in orientation based on 
Equations 2 and 3 in McGinnis & Perkins [42]. This provided a rotation matrix from the 
wearable coordinate system to the “tilt-corrected” coordinate system for each time step. 

Using these time-varying rotation matrices, acceleration data for each frame was 
expressed in the “tilt-corrected” coordinate system then 1 g was subtracted from the y-
axis (in line with gravity). This procedure removed the gravity component from the ac-
celerometer data. To create the wearable and segment coordinate systems (in the next 
step), data were then re-expressed in their original coordinate system using the inverse 
of the time-varying rotation matrices.      
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Figure S47. Top: Uncorrected acceleration of the sacrum for the entire data collection of the exam-
ple participant (colors represent different axes). Bottom: Acceleration of the sacrum after subtract-
ing 1 from the y-axis in the “tilt-corrected” coordinate system and then re-expressing in the weara-
ble coordinate system (colors represent different axes). 

8. Coordinate system definition 

Finally, data were expressed in three different coordinate systems for analysis. First, 
data were expressed in the Wearable Coordinate System (WCS). This is not the raw coor-
dinate system of the IMU. Rather, all data were corrected with the calibration matrices 
described in 1 above. These calibration matrices ensured that data were expressed in 
orthogonal axes aligned     with the IMU housing. The IMU housing was positioned such 
that, during quiet standing, the WCS axes were oriented roughly in the direction of pro-
gression (+x), the longitudinal axis (+y), and to the right (+z).  

Data were also expressed in a Segment Coordinate System (SCS). This coordinate      
system was defined using an approach described in the Supplemental Material of Cain 
et al. [43] which can be found at: 

http://dx.doi.org/10.1016/j.gaitpost.2015.10. 022 

In brief, accelerations during a quiet standing trial were used to define a gravity vec-
tor (similar to 3 above) assuming that the segment was aligned with gravity during the 
standing trial. This gravity-based vector was defined as the proximal-distal axis (+y 
proximal). Then a period of steady-state running was manually selected from the data 
set. Angular velocities from this period were entered into a Principal Component Analy-
sis and the Principal Component accounting for the most variability in angular velocity 
was selected to represent the average axis of rotation. During running the average axis of 
rotation was assumed to correspond to the medial-lateral axis. We defined this as the z 
axis (+z right). The anterior-posterior axis was then defined as the cross-product of y and 
z  (+x anterior). Finally, the z axis was recalculated as the cross-product of x and y to en-
sure orthogonality. These three unit vectors were then used to create a rotation matrix 
that transformed data from the WCS to the SCS. 

 Finally, data were expressed in a pseudo-global system similar to Cain et al.’s “tilt-
corrected” coordinate system (TCCS) [43]. First, we created a rotation matrix based on 
the loading of gravity during quiet periods (see 3 above). This rotation matrix expressed 
data with the y-axis aligned with gravity during quiet standing (+y vertical). Next, the 
acceleration of each axis was double integrated to obtain displacement then entered into 
a Principal Component Analysis. The Principal Component accounting for the most vari-
ation in displacement was taken as the projection of the direction of progression onto the 
horizontal plane (+x direction of progression). Then the projection of the medial-lateral 
axis onto the horizontal plane was defined as the cross product of x and z (+z right). The 
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x-axis was then recalculated to ensure orthogonality. These three unit vectors were then 
used to create a rotation matrix and multiplied by the time-varying rotation matrices 
described in 7 to express data in the TCCS. Thus, TCCS data is always expressed with y 
aligned with gravity but with x and z free to rotate about y as the participant moves. 

 

Figure S48. All plots show sacral accelerations from the same trial from the example partici-
pant. The top row shows data in the Wearable Coordinate System (WCS). the middle row shows 
data in the Segment Coordinate System. The bottom row shows data in the Tilt-Corrected Coordinate 
System (TCCS). The first column shows x-axis data (blue). The second column shows y-axis data (or-
ange). The third column shows z-axis data (yellow). Due to the similarities between all three coordinate 
systems at the sacrum, discrepancies are minor. 

 
  



 

41 

References 
 
1. Cavanagh, P.R.; Lafortune, M.A. Ground reaction forces in distance running. J. Biomech. 1980, 13, 397–406. 

https://doi.org/10.1016/0021-9290(80)90033-0. 
2. Munro, C.F.; Miller, D.I.; Fuglevand, A.J. Ground reaction forces in running: A reexamination. J. Biomech. 1987, 20, 147–155. 

https://doi.org/10.1016/0021-9290(87)90306-x. 
3. Cavanagh, P.R.; Kram, R. Stride length in distance running: velocity, body dimesnions, and added mass effects. Med. Sci. Sport. 

Exerc. 1989, 21, 467–479. 
4. Williams, K.R.; Snow, R.; Arguss, C. Changes in distance running kinematicswith fatigue. Int. J. Sport Biomech. 1991, 7, 138–162. 
5. De Wit, B.; De Clercq, D.; Aerts, P. Biomechanical analysis of the stance phase during barefoot and shod running. J. Biomech. 

1999, 33, 269–278. https://doi.org/10.1016/s0021-9290(99)00192-x. 
6. Weyand, P.G.; Sternlight, D.B.; Bellizzi, M.J.; Wright, S. Faster top running sppeds are achieved with greater ground forces not 

more rapid leg movements. J. Appl. Physiol. 2000, 89, 1991–1999. 
7. Leskinen, A.; Häkkinen, K.; Virmavirta, M.; Isolehto, J.; Kyröläinen, H. Comparison of running kinematics between elite and 

national-standard 1500-m runners. Sport. Biomech. 2009, 8, 1–9. https://doi.org/10.1080/14763140802632382. 
8. Weyand, P.G.; Sandell, R.F.; Prime, D.N.L.; Bundle, M.W. The biological limits to running speed are imposed from the ground 

up. J. Appl. Physiol. 2010, 108, 950–961. https://doi.org/10.1152/japplphysiol.00947.2009. 
9. Meardon, S.A.; Hamill, J.; Derrick, T.R. Running injury and stride time variability over a prolonged run. Gait Posture 2011, 33, 

36–40. https://doi.org/10.1016/j.gaitpost.2010.09.020. 
10. Mizrahi, J.; Verbitsky, O.; Isakov, E.; Daily, D. Effect of fatigue on leg kinematics and impact acceleration in long distance run-

ning. Hum. Mov. Sci. 2000, 19, 139–151. https://doi.org/10.1016/s0167-9457(00)00013-0. 
11. Mercer, A.J.; Bates, B.T.; Dufek, J.; Hreljac, A. Characteristics of shock attenuation during fatigued running. J. Sport. Sci. 2003, 

21, 911–919. https://doi.org/10.1080/0264041031000140383. 
12. Shorten, M.R.; Winslow, D.S. Spectral Analysis of Impact Shock during Running. Int. J. Sport. Biomech. 1992, 8, 288–304. 

https://doi.org/10.1123/ijsb.8.4.288. 
13. Hamill, J.; Derrick, T.; Holt, K. Shock attenuation and stride frequency during running. Hum. Mov. Sci. 1995, 14, 45–60. 

https://doi.org/10.1016/0167-9457(95)00004-c. 
14. Derrick, T.R.; Hamill, J.; Caldwell, G.E. Energy absorption of impacts during running at various stride lengths. Med. Sci. Sport. 

Exerc. 1998, 30, 128–135. https://doi.org/10.1097/00005768-199801000-00018. 
15. Derrick, T.R.; Dereu, D.; McLean, S.P. Impacts and kinematic adjustments during an exhaustive run. Med. Sci. Sport. Exerc. 2002, 

34, 998–1002. https://doi.org/10.1097/00005768-200206000-00015. 
16. Purcell, B.; Channells, J.; James, D.; Barrett, R. Use of accelerometers for detecting foot-ground contact time during running. 

2005, 6036, 292–299. https://doi.org/10.1117/12.638389. 
17. Aminian, K.; Najafi, B.; Büla, C.; Leyvraz, P.-F.; Robert, P. Spatio-temporal parameters of gait measured by an ambulatory sys-

tem using miniature gyroscopes. J. Biomech. 2002, 35, 689–699. https://doi.org/10.1016/s0021-9290(02)00008-8. 
18. O’Donovan, K.; Greene, B.; McGrath, D.; O’Neill, R.; Burns, A.; Caulfield, B. SHIMMER: A new tool for temporal Gait analysis. 

In Proceedings of the 31st Annual International Conference of the IEEE EMBS, Minneapolis, MN, USA, 3–6 September 2009. 
19. Greene, B.R.; McGrath, D.; O’neill, R.; O’donovan, K.J.; Burns, A.; Caulfield, B. An adaptive gyroscope-based algorithm for 

temporal gait analysis. Med. Biol. Eng. Comput. 2010, 48, 1251–1260. https://doi.org/10.1007/s11517-010-0692-0 
20. McGrath, D.; Greene, B.R.; O’donovan, K.J.; Caulfield, B. Gyroscope-based assessment of temporal gait parameters during tread-

mill walking and running. Sport. Eng. 2012, 15, 207–213. https://doi.org/10.1007/s12283-012-0093-8. 
21. Sinclair, J.; Hobbs, S.J.; Protheroe, L.; Edmundson, C.J.; Greenhalgh, A. Determination of Gait Events Using an Externally 

Mounted Shank Accelerometer. J. Appl. Biomech. 2013, 29, 118–122. https://doi.org/10.1123/jab.29.1.118. 
22. Whelan, N.; Healy, R.; Kenny, I.; Harrison, A. A comparison of foot strike events using the force plate and peak impact acceler-

ation measures. In International Society of Biomechanics in Sport 33; Poitiers, France, 2015. 
23. Norris, M.; Kenny, I.C.; Anderson, R. Comparison of accelerometry stride time calculation methods. J. Biomech. 2016, 49, 3031–

3034. https://doi.org/10.1016/j.jbiomech.2016.05.029. 
24. Schmidt, M.; Rheinländer, C.; Nolte, K.F.; Wille, S.; Wehn, N.; Jaitner, T. IMU- based Determination of Stance Duration during 

Sprinting. Procedia Eng. 2016, 147, 747–752. https://doi.org/10.1016/j.proeng.2016.06.330. 
25. Aubol, K.G.; Milner, C. Foot contact identification using a single triaxial accelerometer during running. J. Biomech. 2020, 105, 

109768. https://doi.org/10.1016/j.jbiomech.2020.109768. 
26. Fadillioglu, C.; Stetter, B.J.; Ringhof, S.; Krafft, F.C.; Sell, S.; Stein, T. Automated gait event detection for a variety of locomotion 

tasks using a novel gyroscope-based algorithm. Gait Posture 2020, 81, 102–108. https://doi.org/10.1016/j.gaitpost.2020.06.019. 
27. Bach, M.M.; Dominici, N.; Daffertshofer, A. Predicting vertical ground reaction forces from 3D accelerometery using reservoir 

computers leads to accurate gait event detection. BioRxiv 2022. https://doi.org/10.3389/fspor.2022.1037438. 
28. Auvinet, B.; Gloria, E.; Renault, G.; Barrey, E. Runner’s stride analysis: comparison of kinematic and kinetic analyses under field 

conditions. Sci. Sport. 2002, 17, 92–94. https://doi.org/10.1016/s0765-1597(02)00122-3. 
29. Lee, J.; Mellifont, R.; Burkett, B. The use of a single inertial sensor to identify stride, step, and stance durations of running gait. 

J. Sci. Med. Sport 2010, 13, 270–273. 
30. Wixted, A.; Billing, D.; James, D. Validation of trunk mounted inertial sensors for analysing running biomechanics under field 

conditions, using synchronously collected foot contact data. Sport. Eng. 2010, 12, 207–212. 



 

42 

31. Bergamini, E.; Picerno, P.; Pillet, H.; Natta, F.; Thoreux, P.; Camomilla, V. Estimation of temporal parameters during sprint 
running using a trunk-mounted inertial measurement unit. J. Biomech. 2012, 45, 1123–1126. https://doi.org/10.1016/j.jbio-
mech.2011.12.020. 

32. Luo, J.; Bai, J.; Shao, J. Application of the wavelet transforms on axial strain calculation in ultrasound elastography. Prog. Nat. 
Sci. 2006, 16, 942–947. https://doi.org/10.1080/10020070612330093. 

33. Benson, L.; Clermont, C.; Watari, R.; Exley, T.; Ferber, R. Automated accelerometer-based gait event detection during multiple 
running conditions Lauren. Sensors 2019, 19, 1483. 

34. Reenalda, J.; Zandbergen, M.A.; Harbers, J.H.; Paquette, M.R.; Milner, C.E. Detection of foot contact in treadmill running with 
inertial and optical measurement systems. J. Biomech. 2021, 121, 110419. https://doi.org/10.1016/j.jbiomech.2021.110419. 

35. United States Geological Survey. Gravity Anamoly Map of the Continental United States. Available online: 
https://mrdata.usgs.gov/gravity/map-us.html#home (accessed on 5 June 2019).  

36. National Geodtic Survey. NGS Surface Gravity Prediction. National Oceanic and Atmospheric Administration. Available online: 
https://www.ngs.noaa.gov/cgi-bin/grav_pdx.prl (accessed on 5 June 2019).  

37. Coolbaugh, C.L.; Hawkins, D.A. Standardizing Accelerometer-Based Activity Monitor Calibration and Output Reporting. J. 
Appl. Biomech. 2014, 30, 594–597. https://doi.org/10.1123/jab.2013-0240. 

38. Lafortune, M.A. Three-dimensional acceleration of the tibia during walking and running. J. Biomech. 1991, 24, 877–886. 
https://doi.org/10.1016/0021-9290(91)90166-k. 

39. Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic. Eng. 1960, 82, 35–45. 
https://doi.org/10.1115/1.3662552. 

40. Mahony, R.; Hamel, T.; Pflimlin, J.-M. Nonlinear Complementary Filters on the Special Orthogonal Group. IEEE Trans. Autom. 
Control. 2008, 53, 1203–1218. https://doi.org/10.1109/tac.2008.923738. 

41. Madgwick, S. An Efficient Orientation Filter for Inertial and Inertial/Magnetic Sensor Arrays; x-io: Bristol, UK, 2010. 
42. McGinnis, R.S.; Perkins, N.C. A Highly Miniaturized, Wireless Inertial Measurement Unit for Characterizing the Dynamics of 

Pitched Baseballs and Softballs. Sensors 2012, 12, 11933–11945. 
43. Cain, S.M.; McGinnis, R.S.; Davidson, S.P.; Vitali, R.V.; Perkins, N.C.; McLean, S.G. Quantifying performance and effects of load 

carriage during a challenging balancing task using an array of wireless inertial sensors. Gait Posture 2016, 43, 65–69. 
https://doi.org/10.1016/j.gaitpost.2015.10.022. 

 


