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Abstract: Muscle fatigue is a risk factor for developing musculoskeletal disorders during low-load
repetitive tasks. The objective of this study was to assess the effect of muscle fatigue on power
spectrum changes of upper limb and trunk acceleration and angular velocity during a repetitive
pointing task (RPT) and a work task. Twenty-four participants equipped with 11 inertial measurement
units, that include acceleration and gyroscope sensors, performed a tea bag filling work task before
and immediately after a fatiguing RPT. During the RPT, the power spectrum of acceleration and
angular velocity increased in the movement and in 6–12 Hz frequency bands for sensors positioned
on the head, sternum, and pelvis. Alternatively, for the sensor positioned on the hand, the power
spectrum of acceleration and angular velocity decreased in the movement frequency band. During
the work task, following the performance of the fatiguing RPT, the power spectrum of acceleration
and angular velocity increased in the movement frequency band for sensors positioned on the head,
sternum, pelvis, and arm. Interestingly, for both the RPT and work task, Cohens’ d effect sizes
were systematically larger for results extracted from angular velocity than acceleration. Although
fatigue-related changes were task-specific between the RPT and the work task, fatigue systematically
increased the power spectrum in the movement frequency band for the head, sternum, pelvis, which
highlights the relevance of this indicator for assessing fatigue. Angular velocity may be more efficient
to assess fatigue than acceleration. The use of low cost, wearable, and uncalibrated sensors, such as
acceleration and gyroscope, in industrial settings is promising to assess muscle fatigue in workers
assigned to upper limb repetitive tasks.

Keywords: time-frequency analysis; work task; repetitive pointing task; inertial measurement units

1. Introduction

Upper limb musculoskeletal disorders (MSDs) are one of the most common types
of injuries among industrial workers. They accounted for 30% of declared MSDs in the
Quebec province between 1998 and 2007 [1], and for most lost workdays per year in
US (Statistics 2015, s. d.). Workers performing low-load highly repetitive tasks, such as
poultry processing, hairdressing or dentistry, have more than twice the risk of developing
MSDs than those performing various and mobile tasks such as air traffic control, rubber
mixing or nursing work [2]. Although muscle activation amplitudes are lower than 20% of
their maximum during low-load work activities [2,3], movement repetition causes muscle
fatigue [4,5], which has been identified as a risk factor for developing musculoskeletal
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disorders [6–8]. Consequently, the assessment of muscle fatigue in the workplace is critical
to improve health prevention in workers performing low-load repetitive tasks [9].

Muscle fatigue alters joint kinematics [10,11]. Indeed, glenohumeral mean and max-
imum elevation angles decreased during various fatiguing low-load repetitive tasks in-
volving the upper limb [10,12–14]. These decreased upper limb ranges of motion were
compensated by an increased trunk range of motion during fatiguing sawing [15], reach-
ing [12] and pointing tasks [16]. To date, investigations of kinematic alterations caused by
muscle fatigue mostly come from laboratory-based experiments involving optoelectronic
or equivalent motion-capture systems [17,18]. Recently, some authors used inertial motion
units (IMUs) to assess fatigue-related kinematic alterations [9,19,20]. IMUs have the ad-
vantage of being inexpensive, portable, and easy to use when compared to optoelectronic
systems [21]. Therefore, IMUs became increasingly popular for monitoring kinematics in
clinical and sport research [22,23] and are promising for assessing fatigue directly in the
workplace. However, IMUs-based 3D orientation of rigid body segments are calculated
using a fusion algorithm combining 3-axis accelerometer, gyroscope, and magnetometer
data [24]. In particular, the fusion algorithms integrate gyroscope data, which results in
error accumulation over time [25–27]. Moreover, the magnetometer is sensitive to envi-
ronmental magnetic perturbations present in industrial settings [28]. Consequently, when
comparing joint angles obtained from IMUs and optoelectronic recordings, the root mean
square error on IMUs-based joint angles exceeded 35◦ for arm flexion and axial rotation
during a complex handling task [29]. Furthermore, as orientation errors increase with
time [30], it would be impossible to discriminate between fatigue-related and error-related
kinematic changes when monitoring work tasks. To compensate for this error accumula-
tion, authors use frequent sensor-to-segment recalibration [12], which is not suitable in the
workplace. Interestingly, some studies successfully detected kinematic manifestations of
fatigue directly from raw acceleration signal, which is not affected by the aforementioned
drifting error. The frequency content of acceleration and angular velocity has been shown to
change with fatigue. Indeed, the power spectrum of the acceleration increased in the 2–4 Hz
frequency band and above 6 Hz [31–33] with the most significant fatigue-induced changes
in frequencies above 10 Hz categorized as physiological tremor [34]. Time-frequency analy-
ses of IMU signals may potentiate our ability to detect fatigue during fatiguing low-load
repetitive work tasks by concurrently detecting fatigue-related motor alterations which
are typically observed in the movement frequency band and in the physiological tremor
frequency band.

The objective of this study was to assess the effect of muscle fatigue on the frequency
content of acceleration and angular velocity signals during a standardized repetitive point-
ing task (RPT) known to generate upper limb fatigue and an upper limb low-load repetitive
work task (i.e., tea bag filling). For both the RPT and the work task, we hypothesized
that the acceleration and angular velocity power spectrum of the trunk would increase in
frequency bands around the movement cadences as its range of motion increased with
fatigue, which would be the reverse for upper limb segments [35]. We also hypothesized
that the power spectrum of upper limb distal segments would increase around 10 Hz with
fatigue due to physiological tremor [21,31,36,37].

2. Methods
2.1. Participants

Twenty-four right-handed participants (12 women; age: 32.9 ± 8.9 years; mass:
66.8 ± 10.9 kg; height: 166 ± 9 cm) were recruited among workers of a tea packaging
factory. All participants were familiar with the work task investigated in this study since
they had performed this task full-time (23 participants) or part-time (1 participant) for
2.6 ± 1.6 months [range: 1–24 months]. Exclusion criteria included any medically diag-
nosed upper limb disabilities or musculoskeletal disorders at the time of the experiment.
All participants read and signed a written informed consent form before performing any
experimental procedure.
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2.2. Instrumentation

Kinematics. Participants were equipped with 11 IMUs (MTw, Xsens, Enschede, Nether-
lands; https://www.xsens.com/products/mtw-awinda, accessed on 13 October 2022)
positioned on the pelvis, sternum, head and on both hands, lower arms, upper arms, and
shoulders. The location of IMUs followed Xsens recommendations [38] except for the
shoulders, where they were positioned closer to the acromion to leave space for reflec-
tive markers and electromyography electrode positioning (Figure 1A). IMU acceleration
and angular velocity were recorded using the MT Manager software (Xsens, Enschede,
Netherlands) at a sampling rate of 40 Hz.
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Figure 1. (A) Participant equipped with IMUs. (B) Picture of the MVIC setup. (C) Schematic top view
of the RPT. (D) Work task. (E) Timeline of the experiment.

Repetitive pointing task (RPT). Two cylindrical touch-sensitive sensors (length: 6 cm,
radius: 0.5 cm, Quantum Research Group Ltd., Hamble, UK) were used as proximal
and distal targets for the RPT (Figure 1B). The latter were placed at shoulder height,
in the midsagittal plane, and at 30% (proximal target) and 100% (distal target) of the
arm length. Each time the sensors were touched by the participants, TTL pulses were
recorded at a sampling rate of 2000 Hz by the Nexus software (Vicon, Oxford, UK) and an

https://www.xsens.com/products/mtw-awinda
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auditory feedback was given to participants to help them synchronize with the tempo of
the metronome (see Section 2.3).

Force. A unidirectional S-shape load cell (363-D3-300-20P3, InterTechnology Inc., Don
Mills, ON, Canada) was used to measure the shoulder flexion maximal voluntary isometric
force. The load cell was attached to a horizontal bar located above the RPT setup (Figure 1C).
Force data were recorded at a sampling rate of 2000 Hz using Nexus (Vicon, Oxford, UK).

IMUs, touch-sensitive sensors, and load cell data were synchronised via a TTL pulse
sent by the MT Manager software to Nexus (Vicon, Oxford, UK) at the beginning of
each recording.

2.3. Experimental Protocol

The experiment was composed of the succession of maximal voluntary isometric contrac-
tions (MVICs), a work task, and a RPT as shown on Figure 1E.

Maximum voluntary isometric contractions. Participants stood up facing the MVIC setup
(Figure 1B) with their shoulder flexed at 90◦ and their forearm below the horizontal bar
attached to the load cell. They were asked to push upward as hard as they could against
the horizontal bar for 3 s using shoulder muscles without compensation of the trunk.
Verbal encouragement was given to participants. As presented in Figure 1E, MVICs were
performed twice at the beginning of the experiment (MVIC1 and MVIC2), every 2 min
during the RPT and at the end of the work task (MVIC4). MVIC3 corresponds to the last
MVIC performed during the RPT (cf Repetitive pointing task).

Repetitive pointing task. Participants stood upright in front of the RPT setup with
the dominant arm held in a horizontal plane at shoulder height, and the feet parallel at
shoulder width. They were asked to touch alternatively the two touch-sensitive targets
at a rhythm of one cycle (back and forth) per two secs [16,35,39] by synchronising the
targets’ sounds to those of an external metronome. To ensure that participants maintained
their arm horizontal, an elliptically shaped mesh barrier was placed under the elbow
trajectory. The non-dominant arm rested on the side of the body during the whole RPT.
Participants reported their rate of perceived exertion every 30 s using the CR-10 Borg
scale [40]. Additionally, the RPT was interrupted every 2 min so that participants performed
a MVIC as described above. After each MVIC, participants resumed the RPT without
resting. Participants were asked to perform the task for as long as possible and were
stopped when they reached a score of 8 or higher on the CR-10 Borg scale. Participants
were not aware of this stoppage criterion.

Work task. The work task was performed before and immediately after the RPT. This
task was identified, according to interviews, as being the most repetitive fatiguing task
for upper limb muscles, among all work tasks performed at the tea packaging factory.
The setup described thereafter was made according to observations made at the workers’
tea packaging factory to replicate actual workplace conditions. Participants performed
a repetitive work task consisting of filling tea bags of 57 g using a 35 g shovel in their
dominant hand. A scale was positioned on their non-dominant side to adjust the required
weight. The table height was 87 cm. Participants were instructed to keep their own personal
work pace for a 2 min duration trial. According to the observations made on the workplace,
this was expected to correspond to the filling of 6 tea bags.

2.4. Data Processing

Data processing and statistical analyses were performed with Matlab R2019a (The
MathWorks Inc., Natick, MA, USA). All filters mentioned thereafter are zero-lag second-
order Butterworth filters.

Load cell data were low-pass filtered at 30 Hz. To obtain maximum voluntary isometric
force, filtered load cell data were averaged over a 1 s overlapping moving window and the
maximum value obtained during each MVIC trial was kept for statistical analysis.

IMU acceleration and angular velocity data were bandpass filtered between 0.1 Hz
and 15 Hz [9,41] and were centered around zero by subtracting their mean value.
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Power spectrum. Power spectrum amplitude. For each sensor of each participant, a
time-frequency convolution (Equations (1) and (2)) was applied to the x-, y-, and z-axis
acceleration and angular velocity using a continuous Complex Morlet wavelet 8-1 (wave
number: 8, frequency range: 0.1 Hz to 15 Hz in 0.05 Hz steps; “cwt” Matlab function).

Wx(s, u) = ∑T
k=1 x(tk)ϕs,u(tk) (1)

where s and u denotes frequency and time, respectively; x(tk) is a time series of length T
regularly spaced at k; z denotes the conjugate of a complex number z.

ϕs,u(tk) =
1√

s
ϕ

(
tk − u

s

)
(2)

X-, y-, and z-axis time-frequency maps were then summed for acceleration and angular
velocity independently. For the RPT, the resulting time-frequency maps were segmented
in time based on cycles extracted from touch-sensitive sensor data. Only cycles lasting
between 1.6 s and 2.4 s from the first 10 (task Initiation) and last 10 (task Termination) cycles
were kept for analysis. Each segment of the time-frequency map was then interpolated
over 100 points. Finally, all segments of the time-frequency map were average for task
Initiation and Termination, before averaging in the 0.4–0.6 Hz and 6–12 Hz frequency bands.
These frequency bands were selected to detect kinematic adaptations to fatigue and tremor
related changes, respectively. For the work task, the middle 100 s of the 120 s duration of
the work task was kept for analysis, and averaged in the 0.1–4 Hz and 6–12 Hz frequency
bands. Note that the lower frequency band was larger for the work task than for the RPT
because the main frequency component was larger in the work task, as expected.

2.5. Statistical Analyses

Maximum voluntary isometric contraction. A one-way ANOVA with repeated mea-
sures on Time (MVIC1, MVIC2, MVIC3, MVIC4) was performed on maximum voluntary
isometric force, followed by a Tukey post hoc analysis.

Repetitive pointing task. The number of remaining cycles as well as the average and
standard deviation of their duration were compared between task Initiation and Termination
using a paired t-test to assess the effect of Time on task execution. For each IMU sensor,
the 0.4–0.6 Hz and 6–12 Hz power spectrum of acceleration and angular velocity were
compared between task Initiation and Termination using a paired t-test for each IMU sensor.

Work task. For each IMU, the 0.1–4 Hz and 6–12 Hz power spectrum of acceleration
and angular velocity were compared between pre- and post-RPT using a paired t-test.

For all analyses, Cohen’s d effect size statistics were reported and qualitatively inter-
preted as small (d < 0.5), moderate (0.5 < d < 0.8) and large (d > 0.8) according to frequently
used standards [42].

3. Results
3.1. Maximum Voluntary Isometric Force

The one-way ANOVA on maximum voluntary isometric force revealed a significant
Time effect (F3,88 = 7.130; p < 0.001). The post hoc analysis showed that MVIC3 was
significantly smaller than MVIC1 (t23 = 4.702; p < 0.001; Coh. d = 0.70), MVIC2 (t23 = 6.157;
p < 0.001, Coh. d = 0.95), and MVIC4 (t23 = −5.926; p < 0.001, Coh. d = 1.22) (Figure 2).
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Figure 2. Force developed during MVIC trials. Dots represent each participants’ data. Black
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3.2. Repetitive Pointing Task

Task execution. Participants performed the RPT for 306 ± 114 s [range 120–540 s].
As cycles lasting less than 1.60 s and more than 2.40 s were removed, 8.96 ± 2.24 and
9.38 ± 2.06 cycles were included in the analysis for task Initiation and Termination, respec-
tively. Cycles lasted on average 1.87 ± 0.41 s and 1.88 ± 0.41 s during task Initiation and
Termination, respectively. Their duration variability was 0.10 ± 0.05 s and 0.10 ± 0.04 s for
task Initiation and Termination, respectively. The number of cycles included in the analysis,
their mean duration, and variability duration were not significantly different between
task Initiation and Termination (t23 = 1.794; p = 0.086, t23 = 0.523; p = 0.606, t23 = 0.234;
p = 0.817, respectively).

Power spectrum. The paired t-test performed on power spectrum revealed significant
differences for both acceleration and angular velocity between task Initiation and Termination
(Figure 3 and Table 1). Concerning the 0.4–0.6 Hz frequency band, the power spectrum
significantly increased for the acceleration and angular velocity of IMUs positioned on
the head, sternum, and pelvis and for the angular velocity of the IMU positioned on the
shoulder (moderate to large effect size). Alternatively, the power spectrum significantly
decreased for the acceleration and angular velocity for the IMU positioned on the hand and
for the angular velocity of the IMU positioned on the forearm (small effect size). Concerning
the 6–12 Hz frequency band, the power spectrum significantly increased for the acceleration
and angular velocity of IMUs positioned on the head, sternum, pelvis, and arm (small to
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moderate effect size) as well as for the angular velocity of the IMU positioned on the hand
(small effect size).
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Figure 3. RPT Initiation versus Termination power spectrum for the acceleration and angular velocity
in the 0.4–0.6 Hz and 6–12 Hz frequency bands for the head, sternum, pelvis, shoulder, arm, forearm,
and hand. Dots represent each participants’ data. Black horizontal lines represent the participants
means; grey bars represent standard deviations. Pink backgrounds indicate significant differences
between task Initiation and Termination.

Table 1. T and p values and Cohen’s d effect sizes for each comparison performed between Task
Initiation and Termination and pre- and post-RPT work tasks.

Head Sternum Pelvis Shoulder Arm Forearm Hand

RPT

Acc.

0.4–0.6 Hz
t23 = −4.139
p < 0.001
Coh. d = 0.77

t23 = −2.955
p = 0.008
Coh. d = 0.69

t23 = −2.760
p = 0.011
Coh. d = 0.67

t23 = −1.215
p = 0.237
Coh. d = 0.21

t23 = −0.242
p = 0.811
Coh. d = 0.08

t23 = 0.678
p = 0.505
Coh. d = −0.08

t23 = 2.419
p = 0.024
Coh. d = −0.22

6–12 Hz
t23 = −3.656
p = 0.001
Coh. d = 0.69

t23 = −2.370
p = 0.027
Coh. d = 0.34

t23 = −3.992
p < 0.001
Coh. d = 0.70

t23 = −1.442
p = 0.163
Coh. d = 0.15

t23 = −3.994
p < 0.001
Coh. d = 0.42

t23 = −1.141
p = 0.266
Coh. d = 0.20

t23 = −1.409
p = 0.172
Coh. d = 0.18

Angular
velocity

0.4–0.6 Hz
t23 = −6.103
p < 0.001
Coh. d = 0.98

t23 = −4.637
p < 0.001
Coh. d = 1.01

t23 = −3.499
p = 0.002
Coh. d = 0.78

t23 = −4.533
p < 0.001
Coh. d = 0.60

t23 = −1.002
p = 0.327
Coh. d = 0.18

t23 = 3.370
p = 0.003
Coh. d = −0.43

t23 = 2.366
p = 0.027
Coh. d = −0.32

6–12 Hz
t23 = −3.754
p = 0.001
Coh. d = 0.79

t23 = −2.211
p = 0.037
Coh. d = 0.29

t23 = −3.866
p < 0.001
Coh. d = 0.58

t23 = −0.308
p = 0.761
Coh. d = 0.03

t23 = −2.862
p = 0.009
Coh. d = 0.31

t23 = −1.606
p = 0.122
Coh. d = 0.34

t23 = −2.323
p = 0.029
Coh. d = 0.38

Work
task

Acc.

0.1–4 Hz
t23 = −2.526
p = 0.019
Coh. d = 0.35

t23 = −2.474
p = 0.021
Coh. d = 0.26

t23 = −2.121
p = 0.045
Coh. d = 0.28

t23 = −2.005
p = 0.057
Coh. d = 0.18

t23 = −2.256
p = 0.034
Coh. d = 0.18

t23 = −1.350
p = 0.190
Coh. d = 0.12

t23 = −1.726
p = 0.098
Coh. d = 0.15

6–12 Hz
t23 = 0.637
p = 0.531
Coh. d = −0.04

t23 = 0.052
p = 0.959
Coh. d = 0.00

t23 = 0.409
p = 0.686
Coh. d = −0.02

t23 = 0.503
p = 0.620
Coh. d = −0.02

t23 = −0.164
p = 0.872
Coh. d = 0.01

t23 = −1.311
p = 0.203
Coh. d = 0.09

t23 = −1.168
p = 0.255
Coh. d = 0.08

Angular
velocity

0.1–4 Hz
t23 = −2.419
p = 0.024
Coh. d = 0.26

t23 = −2.541
p = 0.018
Coh. d = 0.33

t23 = −3.102
p = 0.005
Coh. d = 0.35

t23 = −2.011
p = 0.056
Coh. d = 0.20

t23 = −2.493
p = 0.020
Coh. d = 0.22

t23 = −1.399
p = 0.175
Coh. d = 0.12

t23 = −1.555
p = 0.134
Coh. d = 0.15

6–12 Hz
t23 = 0.004
p = 0.999
Coh. d = 0.00

t23 = −0.603
p = 0.552
Coh. d = 0.05

t23 = −0.681
p = 0.503
Coh. d = 0.06

t23 = 0.343
p = 0.735
Coh. d = −0.02

t23 = −0.997
p = 0.329
Coh. d = 0.07

t23 = −1.690
p = 0.104
Coh. d = 0.13

t23 = −2.433
p = 0.023
Coh. d = 0.17

3.3. Work Task

The paired t-test performed on power spectrum revealed significant increases for
both acceleration and angular velocity between work tasks performed before (pre-) and
immediately after (post-) the RPT (Figure 4 and Table 1). Concerning the 0.1–4 Hz frequency
band, the power spectrum significantly increased for the acceleration and angular velocity
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of IMUs positioned on the head, sternum, pelvis, and arm (small effect size). Concerning
the 6–12 Hz frequency band, the power spectrum significantly increased for the angular
velocity of the IMU positioned on the hand (small effect size).
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4. Discussion

To the best of our knowledge, the present study is the first to assess manifestations of
muscle fatigue using the frequency content of acceleration and angular velocity during low-
load dynamic upper limb tasks. During a standardized RPT, the power spectrum of head,
sternum, and pelvis acceleration and angular velocity increased between task Initiation and
Termination in all frequency bands of interest. For the 0.4–0.6 Hz frequency band, the power
spectrum of the hand decreased. Comparing the pre- and post-RPT tea bag filling work
task, we observed an increase in power spectrum of acceleration and angular velocity for
the head, sternum, pelvis, and arm. As discussed, these changes in the frequency content
of acceleration and angular velocity may be interpreted as indicators of muscle fatigue that
could be used in industrial settings to better prevent musculoskeletal disorders.

4.1. Repetitive Pointing Task

Increases in effort perception and decreases in maximal voluntary isometric force are
characteristics of muscle fatigue [36,43,44]. Firstly, all participants reached 8 or more at
the CR-10 Borg scale in 306 ± 114 s. As the task performed by the participants remained
the same, the increase of their effort perception is a sign of fatigue [45]. Secondly, the
post hoc analysis performed on MVICs data revealed a significant loss of force production
immediately after the completion of the RPT confirming that participants developed muscle
fatigue during the RPT. Importantly, movement cycle duration and its variability did not
change between task Initiation and Termination suggesting that observed changes in terms
of acceleration and angular velocity frequency content can be interpreted as a manifestation
of muscle fatigue.
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Among these changes, power spectrum in the 0.4–0.6 Hz frequency, which corresponds
to the main frequency component of the RPT, increased moderately to largely between
task Initiation and Termination for acceleration and angular velocity for the head, sternum,
and pelvis, while it decreased for the hand, which agrees with previous kinematics-based
studies. Indeed, postural sway [46], head range of motion and vertical displacement
amplitude [47,48], as well as trunk range of motion [15,16,35] have been shown to increase
during fatiguing standing and various upper limb tasks such as the RPT used in the present
study. Conversely, the decrease of both acceleration and angular velocity power spectrum
at the hand may be explained by the decreased elbow range of motion with fatigue as
previously reported during RPT [35]. Interestingly, Cohens’ d effect sizes were greater for
angular velocity than for acceleration and the angular velocity power spectrum changes
also involved the shoulder (increase) and the forearm (decrease), which was not the case
for acceleration. These observations suggest that angular velocity may be more sensitive to
manifestations of muscle fatigue than acceleration. In addition, for angular velocity, Cohens’
d values were comparable (moderate to high) to those reported from joint range of motion
obtained using an optoelectronic system measurements during a RPT [15], suggesting that
uncalibrated wearable sensors may be as efficient as complete optoelectronic systems to
assess kinematics adaptions to muscle fatigue.

Increases in power spectrum in the 6–12 Hz frequency band, involving the head,
sternum, pelvis and arm may be interpreted as physiological tremor known to occur
around 10 Hz with muscle fatigue [36,49]. However, to the best of our knowledge, tremor
in response to muscle fatigue has been previously mostly observed for distal upper limb
segments [31,32,36]. Interestingly, in a study by Kouzaki and Masani [50], a physiological
tremor component recorded at the soleus during quiet standing was positively correlated to
postural sway measures such as centre of pressure velocity and body acceleration, as well
as the 1–10 Hz component of the centre of pressure. Authors suggested that physiological
tremor of the soleus muscle may cause the fast components of postural sway during quiet
standing. Therefore, it may be suggested that the increased power spectrum of the head
and trunk segments results from an increased postural sway during the RPT. Although
further studies are needed to better characterise physiological tremor at the head and trunk
segments during fatiguing RPT, changes in power spectrum of both 0.4–0.6 Hz and 6–12 Hz
frequency bands may be relevant indicators of the manifestation of muscle fatigue.

4.2. Work Task

Like the RPT, power spectrum of the 0.1–4 Hz frequency band of acceleration and
angular velocity increased for head, sternum, pelvis, and arm segments during the work
task. However, the power spectrum also increased for the arm, which was the opposite
for the RPT. This discrepancy in terms of power spectrum alteration may be due to task
specificities. Indeed, during the RPT that is constrained in terms of timing and targets, the
trunk range of motion increases, while it decreases for the upper limb [35]. Alternatively,
during the work task, different motor strategy can be employed to fill the tea bags, which
may have resulted in different motor adaptations to muscle fatigue that lead to increased
power spectrum changes at the arm. Interestingly, Goubault et al. [19] showed that mani-
festations of muscle fatigue were found at different segments between two different piano
tasks involving either restricted range of motion or larger movement amplitudes. These
observations emphasize that the location of kinematic adaptations to muscle fatigue mea-
sured through the power spectrum changes of acceleration and angular velocity might
differ according to the task of interest [36,51]. Nevertheless, in both the RPT and work
task, although Cohens’ d effect sizes were smaller for the work task than the RPT, power
spectrum of acceleration and angular velocity at the head and trunk segments increased
in the frequency band of the movement, reemphasizing the relevance of this indicator for
assessing muscle fatigue in the workplaces.
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4.3. Limitations

Although the RPT successfully caused muscle fatigue, the significant increase in force
production between the MVIC3 and MVIC4, performed, respectively, immediately before
and after the post-RPT work task, implies some limitations. This increased force produc-
tion suggests that participants had recovered during the post-RPT work task. Therefore,
although our results revealed significant changes in power spectrum of acceleration and
angular velocity between pre- and post-RPT measurements, the level of fatigue at the
beginning of the post-RPT work task may not have been maintained across the two minutes
duration of this work task. Consequently, changes in power spectrum between pre- and
post-RPT may not be strictly interpreted as a fatigue effect but rather as changes following
the performance of a fatiguing task.

5. Conclusions

The objective of this study was to assess changes in the frequency content of accelera-
tion and angular velocity during a fatiguing low-load RPT and the effect of this fatiguing
task on an actual tea bag filling work task reproduced in laboratory performed with the
upper limb. Power spectrum of acceleration and angular velocity systematically increased
with muscle fatigue at the head, sternum, and pelvis in the frequency band of the movement.
Alternatively, when significant, the power spectrum changes in distal upper limb were
task dependent. The present study shows that the power spectrum of the head and trunk
acceleration and angular velocity, recorded using low cost, wearable, and uncalibrated
sensors, may be used in industrial settings to assess fatigue in workers assigned to upper
limb repetitive tasks.
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