remotesensing-logo

Journal Browser

Journal Browser

Carbon Sink Pattern and Land Spatial Optimization in Coastal Areas

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Ocean Remote Sensing".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 1573

Special Issue Editors


E-Mail Website
Guest Editor
School of Public Administration and Policy, Renmin University of China, Beijing 100872, China
Interests: coastal spatial planning; marine carbon sink accounting; regional sustainable development

E-Mail
Guest Editor
College of Environment and Resources, Guangxi Normal University, Guilin 541000, China
Interests: climate change and regional response and adaptation; eco-environmental effects of land-use change

E-Mail
Guest Editor
First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
Interests: remote sensing of vegetation and ecological environment; assessment of ecosystem service value

Special Issue Information

Dear Colleagues,

The coastal zone represents one of the largest blue carbon sinks on the Earth, and is simultaneously one of the most densely populated and economically vital regions globally. Coastal carbon sinks play an important role in optimizing spatial utilization and conservation. Understanding the spatiotemporal pattern and evolution trend of coastal carbon sinks, integrating these insights into land spatial planning and exploring the path of enhancing the potential of coastal carbon sinks and the coordinated improvement of land–sea in land spatial planning are expected to play a positive role in the rational development and utilization of the coastal land space, ecological protection and restoration.

In order to develop and utilize land more scientifically and rationally during the urbanization process and to effectively promote carbon sink enhancement to cope with global climate change, we organized this Special Issue. We invite submissions that explore theoretical research and practical applications related to oceans, coastal carbon sinks, land-use optimization, etc. The topics considered in this Special Issue should emphasize practical applications and go beyond theoretical and model-based research.

Suggested topics for this Special Issue include but are not limited to the following:

  • Evolution characteristics of marine and coastal carbon sinks;
  • Ocean carbon sink accounting;
  • Land-use optimization strategies;
  • Impact of urbanization on carbon sink potential;
  • Impact of climate change on carbon sinks;
  • Enhancing carbon sink potential through coordinated land–sea development.

Prof. Dr. Dahai Liu
Dr. Feili Wei
Dr. Tong Dong
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • land and sea coordination
  • carbon sink
  • land-use/land-cover change
  • urbanization
  • model simulation
  • policy development
  • spatial mapping
  • coastal zone
  • climate change

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

33 pages, 10072 KiB  
Article
Multi-Scenario Land Use and Carbon Storage Assessment in the Yellow River Delta Under Climate Change and Resource Development
by Zekun Wang, Xiaolei Liu, Shaopeng Zhang, Xiangshuai Meng, Hongjun Zhang and Xingsen Guo
Remote Sens. 2025, 17(9), 1603; https://doi.org/10.3390/rs17091603 - 30 Apr 2025
Viewed by 32
Abstract
Land use and land cover change (LULCC) is a key driver of carbon storage changes, especially in complex coastal ecosystems such as the Yellow River Delta (YRD), which is jointly influenced by climate change and resource development. The compounded effects of sea-level rise [...] Read more.
Land use and land cover change (LULCC) is a key driver of carbon storage changes, especially in complex coastal ecosystems such as the Yellow River Delta (YRD), which is jointly influenced by climate change and resource development. The compounded effects of sea-level rise (SLR) and land subsidence (LS) are particularly prominent. This study is the first to integrate the dual impacts of SLR and LS into a unified framework, using three climate scenarios (SSP1−26, SSP2−45, SSP5−85) provided in the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), along with LS monitoring data, to comprehensively assess future inundation risks. Building on this, and taking into account land use and ecological protection policies in the YRD, three strategic scenarios—Ecological Protection Scenario (EPS), Natural Development Scenario (NDS), and Economic Growth Scenario (EGS)—are established. The PLUS and InVEST models are used to jointly simulate LULCC and carbon storage changes across these scenarios. Unlike previous studies focusing on single driving factors, this research innovatively develops a dynamic simulation system for LULCC and carbon storage driven by the SLR-LS compound effects, providing scientific guidance for land space development and coastal zone planning in vulnerable coastal areas, while enhancing carbon sink potential. The results of the study show the following: (1) Over the past 30 years, the land use pattern of the YRD has generally extended toward the sea, with land use transitions mainly from grasslands (the largest reduction: 1096.20 km2), wetlands, reservoirs and ponds, and paddy fields to drylands, culture areas, construction lands, salt pans, and tidal flats. (2) Carbon storage in the YRD exhibits significant spatial heterogeneity. Low-carbon storage areas are primarily concentrated in the coastal regions, while high-carbon storage areas are mainly found in grasslands, paddy fields, and woodlands. LULCC, especially the conversion of high carbon storage ecosystems to low carbon storage uses, has resulted in an overall net regional carbon loss of 2.22 × 106 t since 1990. (3) The risk of seawater inundation in the YRD is closely related to LS, particularly under low sea-level scenarios, with LS playing a dominant role in exacerbating this risk. Under the EGS, the region is projected to face severe seawater inundation and carbon storage losses by 2030 and 2060. Full article
(This article belongs to the Special Issue Carbon Sink Pattern and Land Spatial Optimization in Coastal Areas)
17 pages, 4951 KiB  
Article
ENSO Significantly Changes the Carbon Sink and Source Pattern in the Pacific Ocean with Regional Differences
by Xue Tang, Xuhao Wan, Maohong Wei, Hongtao Nie, Wei Qian, Xueqiang Lu, Lin Zhu and Jianfeng Feng
Remote Sens. 2024, 16(24), 4652; https://doi.org/10.3390/rs16244652 (registering DOI) - 12 Dec 2024
Viewed by 955
Abstract
The El Niño-Southern Oscillation (ENSO) alters ocean–atmosphere carbon exchange, but the mechanisms by which it affects the air–sea carbon flux (FCO2) remain unclear. Here, we used gridded FCO2 data from 2003 to 2021 to elucidate the control processes and regional [...] Read more.
The El Niño-Southern Oscillation (ENSO) alters ocean–atmosphere carbon exchange, but the mechanisms by which it affects the air–sea carbon flux (FCO2) remain unclear. Here, we used gridded FCO2 data from 2003 to 2021 to elucidate the control processes and regional differences in the influence of the ENSO on FCO2 in the mid–low latitude Pacific Ocean. Overall, the mid–low latitude Pacific Ocean region was a net sink for CO2, with an average uptake rate of −0.39 molC·m−2·year−1. Specifically, during the La Niña period in 2010–2012, the absorption rate decreased by 15.38%, while during the El Niño period in 2015–2016, it increased by 30.77%. El Niño (La Niña) suppressed (promoted) biological primary production in the North Pacific, leading to reduced (enhanced) carbon uptake. El Niño (La Niña) also inhibited (promoted) physical vertical mixing in the Equatorial Pacific, leading to reduced (enhanced) carbon emissions. In the South Pacific, however, El Niño increased carbon uptake and La Niña decreased carbon uptake; although, not by these two processes. More frequent El Niño in the future will further reduce carbon absorption in the North Pacific and carbon emission in the Equatorial Pacific but increase carbon absorption in the South Pacific. Full article
(This article belongs to the Special Issue Carbon Sink Pattern and Land Spatial Optimization in Coastal Areas)
Show Figures

Figure 1

Back to TopTop