remotesensing-logo

Journal Browser

Journal Browser

International GNSS Service Validation, Application and Calibration

A special issue of Remote Sensing (ISSN 2072-4292). This special issue belongs to the section "Satellite Missions for Earth and Planetary Exploration".

Deadline for manuscript submissions: closed (14 September 2024) | Viewed by 11335

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Maritime Studies, University of Rijeka, Studentska 2, 51000 Rijeka, Croatia
Interests: GNSS; space weather; satellite positioning errors; GNSS risk assessment; inonospheric monitoring for GNSS; GeoRSS systems and technologies

E-Mail Website
Guest Editor
Departamento de Ingeniería Topográfica y Cartografía, Universidad Politécnica de Madrid, Madrid, Spain
Interests: geodesy; InSAR; GNSS; deformation modeling; natural and anthropogenic hazards; engineering geodesy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Instituto de Geociencias IGEO (CSIC-UCM), Madrid, Spain
Interests: geodesy; InSAR; GNSS; deformation modeling; natural and anthropogenic hazards
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Global Navigation Satellite System (GNSS) is a collection of satellites that are positioned in a specific way to produce and transmit location, timing, and navigation data from space to connected sensors on Earth. Additionally, they offer several distinguishing features, such as the utilization of L-band frequencies, which are particularly well suited to use in remote sensing. It has been proven that GNSS remote sensing can be utilized as a substitute for passive remote sensing.

GNSS calibration is required to make sure that the data and outcomes are accurate. In essence, GNSS site calibration creates the link between the required local northing, easting, and elevation and the WGS84 latitude, longitude, and ellipsoidal height. Typically, site calibration entails both a horizontal and vertical adjustment.

The goal of this Special Issue of Remote Sensing is to provide researchers with a venue to share ground-breaking research that pushes the limits of using real-time GNSS in a variety of applications, as well as validation and calibration techniques. The following are just a few examples of potential topics:

  • GNSS precise positioning applications in geodesy;
  • GNSS signal processing and calibration;
  • Precise non-linear motion modelling of GNSS reference stations and their physical mechanisms;
  • Aided real-time GNSS precise positioning services and sensor fusion in challenging environments;
  • Identification of GNSS error sources and mitigation mechanisms;
  • GNSS augmentation systems and integrity monitoring;
  • Real-time GNSS precise positioning services with smartphones;
  • Geohazard monitoring of volcanos, earthquakes, subsidence and landslides;
  • Connected and autonomous vehicles;
  • Integrated applications of BIM and digital twins in infrastructure;
  • Monitoring the Earth’s ionosphere and troposphere;
  • Monitoring deformations of the solid Earth and variations in the hydrosphere;
  • Time and frequency transfer;
  • Earth rotation;
  • Atmospheric parameters;
  • Supporting geodetic research.

Prof. Dr. Serdjo Kos
Prof. Dr. Juan F. Prieto
Prof. Dr. José Fernández
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • GNSS technique/technology
  • GNSS positioning error budget
  • GNSS risk assessment
  • Space weather impact on GNSS
  • GNSS satellite orbit determination
  • GNSS data validation
  • GNSS applications on environments including water vapor, water level, and underwater surveying
  • GNSS applications in disasters such as fires and oil spills
  • GNSS applications on infrastructures
  • GNSS time and frequency transfer
  • GNSS atmospheric parameters
  • GNSS geodetic research
  • GNSS interferometric reflectometry applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 5856 KiB  
Article
Assessment of FY-3E GNOS II Radio Occultation Data Using an Improved Three-Cornered Hat Method
by Jiahui Liang, Congliang Liu, Xi Wang, Xiangguang Meng, Yueqiang Sun, Mi Liao, Xiuqing Hu, Wenqiang Lu, Jinsong Wang, Peng Zhang, Guanglin Yang, Na Xu, Weihua Bai, Qifei Du, Peng Hu, Guangyuan Tan, Xianyi Wang, Junming Xia, Feixiong Huang, Cong Yin, Yuerong Cai and Peixian Liadd Show full author list remove Hide full author list
Remote Sens. 2024, 16(20), 3808; https://doi.org/10.3390/rs16203808 - 13 Oct 2024
Viewed by 401
Abstract
The spatial–temporal sampling errors arising from the differences in geographical locations and measurement times between co-located Global Navigation Satellite System (GNSS) radio occultation (RO) and radiosonde (RS) data represent systematic errors in the three-cornered hat (3CH) method. In this study, we propose a [...] Read more.
The spatial–temporal sampling errors arising from the differences in geographical locations and measurement times between co-located Global Navigation Satellite System (GNSS) radio occultation (RO) and radiosonde (RS) data represent systematic errors in the three-cornered hat (3CH) method. In this study, we propose a novel spatial–temporal sampling correction method to mitigate the sampling errors associated with both RO–RS and RS–model pairs. We analyze the 3CH processing chain with this new correction method in comparison to traditional approaches, utilizing Fengyun-3E (FY-3E) GNSS Occultation Sounder II (GNOS II) RO data, atmospheric models, and RS datasets from the Hailar and Xisha stations. Overall, the results demonstrate that the improved 3CH method performs better in terms of spatial–temporal sampling errors and the variances of atmospheric parameters, including refractivity, temperature, and specific humidity. Subsequently, we assess the error variances of the FY-3E GNOS II RO, RS and model atmospheric parameters in China, in particular the northern China and southern China regions, based on large ensemble datasets using the improved 3CH data processing chain. The results indicate that the FY-3E GNOS II BeiDou navigation satellite system (BDS) RO and Global Positioning System (GPS) RO show good consistency, with the average error variances of refractivity, temperature, and specific humidity being less than 1.12%2, 0.13%2, and 700%2, respectively. A comparison of the datasets from northern and southern China reveals that the error variances for refractivity are smaller in northern China, while temperature and specific humidity exhibit smaller error variances in southern China, which is attributable to the differing climatic conditions. Full article
(This article belongs to the Special Issue International GNSS Service Validation, Application and Calibration)
Show Figures

Figure 1

24 pages, 25911 KiB  
Article
Comparison and Analysis of Three Methods for Dynamic Height Error Correction in GNSS-IR Sea Level Retrievals
by Zhiyu Zhang, Yufeng Hu, Jingzhang Gong, Zhihui Luo and Xi Liu
Remote Sens. 2024, 16(19), 3599; https://doi.org/10.3390/rs16193599 - 27 Sep 2024
Viewed by 663
Abstract
Sea level monitoring is of great significance to the life safety and daily production activities of coastal residents. In recent years, GNSS interferometric reflectometry (GNSS-IR) has gradually developed into a powerful complementary technique for sea level monitoring, with the advantages of wide signal [...] Read more.
Sea level monitoring is of great significance to the life safety and daily production activities of coastal residents. In recent years, GNSS interferometric reflectometry (GNSS-IR) has gradually developed into a powerful complementary technique for sea level monitoring, with the advantages of wide signal spatial coverage and lower maintenance cost. However, GNSS-IR-retrieved sea level estimates suffer from a prominent error source, referred to as the dynamic height error due to the nonstationary sea level. In this study, the tidal analysis method, least squares method and cubic spline fitting method are used to correct the dynamic height error, and their performances are analyzed. These three methods are applied to multi-system and multi-frequency data from three coastal GNSS stations, MAYG, SC02 and TPW2, for three years, and the retrievals are compared and analyzed with the in situ measurements from co-located tide gauges to explore the applicability of the three methods. The results show that the three correction methods can effectively correct the sea level dynamic height error and improve the accuracy and reliability of the GNSS-IR sea level retrievals. The tidal analysis method shows the best correction performance, with an average reduction of 39.3% (10.7 cm) and 37.6% (6.7 cm) in RMSE at the MAYG and TPW2 stations, respectively. At station SC02, the cubic spline fitting method performs the best, with the RMSE reduced by an average of 39.3% (5.5 cm) after correction. Furthermore, the iterative process of the tidal analysis method is analyzed for the first time. We found the tidal analysis method could significantly remove the outliers and correct the dynamic height error through iterations, generally superior to the other two correction methods. With the dense preliminary GNSS-IR sea level retrievals, the smaller window length of the least squares method can yield more corrected retrievals and better correction performance. The least squares method and cubic spline fitting method, especially the former, are highly dependent on the amount of daily GNSS-IR sea level retrievals, but they are more suitable for dynamic height correction in storm events than the tidal analysis method. Full article
(This article belongs to the Special Issue International GNSS Service Validation, Application and Calibration)
Show Figures

Figure 1

0 pages, 15686 KiB  
Article
A Multi-Step Pseudo-Measurement Adaptive Kalman Filter Based on Filtering Performance Evaluation and Its Application in the INS/GNSS Navigation System
by Dapeng Wang and Hai Zhang
Remote Sens. 2024, 16(5), 926; https://doi.org/10.3390/rs16050926 - 6 Mar 2024
Cited by 1 | Viewed by 1102
Abstract
The objective of this paper is to tackle the issue of the degraded navigation accuracy of the inertial navigation system/global navigation satellite system (INS/GNSS) integrated navigation system in urban applications, especially under complex environments. This study utilizes historical state estimates and proposes a [...] Read more.
The objective of this paper is to tackle the issue of the degraded navigation accuracy of the inertial navigation system/global navigation satellite system (INS/GNSS) integrated navigation system in urban applications, especially under complex environments. This study utilizes historical state estimates and proposes a multi-step pseudo-measurement adaptive Kalman filter (MPKF) algorithm based on the filter performance evaluation. First, taking advantage of the independence between INS and GNSS, the enhanced second-order mutual difference (SOMD) algorithm is utilized for estimating the noise variance of the GNSS, which is decoupled from the estimate error of state and used as a module for filter performance evaluation. Then, the construction of the proposed method is presented, together with the analysis of the noise variance of multi-step pseudo-measurement. Ultimately, the efficacy of the MPKF is confirmed through a real-world vehicle experiment involving a tightly-coupled INS/GNSS integrated navigation application, demonstrating a noteworthy enhancement in navigation precision within densely wooded and built-up areas. Compared to the standard EKF and enhanced redundant measurement-based adaptive Kalman filter (ERMAKF), the proposed algorithm improves the positioning accuracy by 48% and 34%, velocity accuracy by 50% and 35%, and attitude accuracy by 38% and 48%, respectively, in the urban building segment. Full article
(This article belongs to the Special Issue International GNSS Service Validation, Application and Calibration)
Show Figures

Graphical abstract

23 pages, 3907 KiB  
Article
Localization of GNSS Spoofing Interference Source Based on a Moving Array Antenna
by Rui Liu, Zhiwei Yang, Qidong Chen, Guisheng Liao and Qinglin Zhu
Remote Sens. 2023, 15(23), 5497; https://doi.org/10.3390/rs15235497 - 25 Nov 2023
Cited by 3 | Viewed by 1602
Abstract
GNSS spoofing interference utilizes falsified navigation signals to launch attacks on GNSS systems, posing a significant threat to applications that rely on GNSS signals for positioning, navigation, and time services. Therefore, achieving effective localization of the sources causing spoofing interference is crucial in [...] Read more.
GNSS spoofing interference utilizes falsified navigation signals to launch attacks on GNSS systems, posing a significant threat to applications that rely on GNSS signals for positioning, navigation, and time services. Therefore, achieving effective localization of the sources causing spoofing interference is crucial in ensuring the secure operation of GNSS. This article proposes a method for locating GNSS spoofing interference sources using a moving array antenna. Firstly, the proposed method utilizes the inherent characteristics of the double-differenced carrier phase from the deception signals received by the array antenna to effectively extract the spoofing signals. Subsequently, by moving the antenna array, the original carrier phase single-difference data of multiple observation points for deception signals are fused to provide a cost function for direct localization of spoofing interference, and a solution method for the cost function is designed. The proposed method addresses the challenge of extracting and localizing GNSS spoofing interference weak signals, effectively avoiding the data correlation of traditional two-step methods for DOA estimation parameters and ensuring the location accuracy of spoofing interference and the robustness of the method. The effectiveness of the proposed method has been validated through simulation experiments, and its adaptability to factors such as errors in carrier phase measurements has been examined. The method exhibits strong applicability and is well-suited for the hardware platform of the GNSS nulling antenna, thereby enabling it to possess simultaneous capabilities in both anti-interference and spoofing interference localization. Full article
(This article belongs to the Special Issue International GNSS Service Validation, Application and Calibration)
Show Figures

Figure 1

32 pages, 5589 KiB  
Article
The CNES Solutions for Improving the Positioning Accuracy with Post-Processed Phase Biases, a Snapshot Mode, and High-Frequency Doppler Measurements Embedded in Recent Advances of the PPP-WIZARD Demonstrator
by Clément Gazzino, Alexis Blot, Elodie Bernadotte, Théo Jayle, Marion Laymand, Nicolas Lelarge, Aude Lacabanne and Denis Laurichesse
Remote Sens. 2023, 15(17), 4231; https://doi.org/10.3390/rs15174231 - 28 Aug 2023
Cited by 3 | Viewed by 1625
Abstract
For many years, the navigation team at the French Space Agency (CNES) has been developing its Precise Point Positioning project. The goal was initially to promote a technique called undifferenced ambiguity resolution. One of the main characteristics of this technique is the capability [...] Read more.
For many years, the navigation team at the French Space Agency (CNES) has been developing its Precise Point Positioning project. The goal was initially to promote a technique called undifferenced ambiguity resolution. One of the main characteristics of this technique is the capability for a user receiver to perform centimeter-level accuracy in real time. To do so, a demonstrator has been built. Its architecture is composed of three main elements: a correction processing software called the server part, a means to transmit the corrections using standardized messages, and a user software capable of handling the corrections to compute an accurate positioning at the user level. In this paper, we present the recent advances in the CNES precise point positioning demonstrator. They are composed of some evolution of the network of stations and server software, the implementation of the new state space representation standard, a new method for instantaneous ambiguity resolution using uncombined four-frequency signals, its implementation in real-time at the server and the user level, and the use of high-rate Doppler measurements to improve the accuracy of the solution in harsh urban environments. On top of that, the computation of high-accuracy post-processed phase biases with the majority of current GNSS signals supported, compatible with the uncombined method and a new online positioning service to demonstrate the capacity of the user software, is demonstrated. Full article
(This article belongs to the Special Issue International GNSS Service Validation, Application and Calibration)
Show Figures

Figure 1

24 pages, 6341 KiB  
Article
The Relationship of Time Span and Missing Data on the Noise Model Estimation of GNSS Time Series
by Xiwen Sun, Tieding Lu, Shunqiang Hu, Jiahui Huang, Xiaoxing He, Jean-Philippe Montillet, Xiaping Ma and Zhengkai Huang
Remote Sens. 2023, 15(14), 3572; https://doi.org/10.3390/rs15143572 - 17 Jul 2023
Cited by 2 | Viewed by 1310
Abstract
Accurate noise model identification for GNSS time series is crucial for obtaining a reliable GNSS velocity field and its uncertainty for various studies in geodynamics and geodesy. Here, by comprehensively considering time span and missing data effect on the noise model of GNSS [...] Read more.
Accurate noise model identification for GNSS time series is crucial for obtaining a reliable GNSS velocity field and its uncertainty for various studies in geodynamics and geodesy. Here, by comprehensively considering time span and missing data effect on the noise model of GNSS time series, we used four combined noise models to analyze the duration of the time series (ranging from 2 to 24 years) and the data gap (between 2% and 30%) effects on noise model selection and velocity estimation at 72 GNSS stations spanning from 1992 to 2022 in global region together with simulated data. Our results show that the selected noise model have better convergence when GNSS time series is getting longer. With longer time series, the GNSS velocity uncertainty estimation with different data gaps is more homogenous to a certain order of magnitude. When the GNSS time series length is less than 8 years, it shows that the flicker noise and random walk noise and white noise (FNRWWN), flicker noise and white noise (FNWN), and power law noise and white noise (PLWN) models are wrongly estimated as a Gauss–Markov and white noise (GGMWN) model, which can affect the accuracy of GNSS velocity estimated from GNSS time series. When the GNSS time series length is more than 12 years, the RW noise components are most likely to be detected. As the duration increases, the impact of RW on velocity uncertainty decreases. Finally, we show that the selection of the stochastic noise model and velocity estimation are reliable for a time series with a minimum duration of 12 years. Full article
(This article belongs to the Special Issue International GNSS Service Validation, Application and Calibration)
Show Figures

Figure 1

25 pages, 8761 KiB  
Article
Forecasting Regional Ionospheric TEC Maps over China Using BiConvGRU Deep Learning
by Jun Tang, Zhengyu Zhong, Jiacheng Hu and Xuequn Wu
Remote Sens. 2023, 15(13), 3405; https://doi.org/10.3390/rs15133405 - 5 Jul 2023
Cited by 5 | Viewed by 1449
Abstract
In this paper, we forecasted the ionospheric total electron content (TEC) over the region of China using the bidirectional convolutional gated recurrent unit (BiConvGRU) model. We first generated the China Regional Ionospheric Maps (CRIMs) using GNSS observations provide by the Crustal Movement Observation [...] Read more.
In this paper, we forecasted the ionospheric total electron content (TEC) over the region of China using the bidirectional convolutional gated recurrent unit (BiConvGRU) model. We first generated the China Regional Ionospheric Maps (CRIMs) using GNSS observations provide by the Crustal Movement Observation Network of China (CMONOC). We then used gridded TEC maps from 2015 to 2018 with a 1 h interval from the CRIMs as the dataset, including quiet periods and storm periods of ionospheric TEC. The BiConvGRU model was then utilized to forecast the ionospheric TEC across China for the year 2018. The forecasted TEC was compared with the TEC from the International Reference Ionosphere (IRI-2016), Convolutional Long Short-Term Memory (ConvLSTM), Convolutional Gated Recurrent Unit (ConvGRU), Bidirectional Convolutional Long Short-Term Memory (BiConvLSTM), and the 1-day Predicted Global Ionospheric Map (C1PG) provided by the Center for Orbit Determination in Europe (CODE). In addition, indices including Kp, ap, Dst and F10.7 were added to the training dataset to improve the forecasting accuracy of the model (-A indicates no indices, while -B indicates with indices). The results verified that the prediction accuracies of the models integrated with these indices were significantly improved, especially during geomagnetic storms. The BiConvGRU-B model presented a decrease of 41.5%, 22.3%, and 13.2% in the root mean square error (RMSE) compared to the IRI-2016, ConvGRU, and BiConvLSTM-B models during geomagnetic storm days. Furthermore, at a specific grid point, the BiConvGRU-B model showed a decrease of 42.6%, 49.1%, and 31.9% in RMSE during geomagnetic quiet days and 30.6%, 34.1%, and 15.1% during geomagnetic storm days compared to the IRI-2016, C1PG, and BiConvLSTM-B models, respectively. In the cumulative percentage analysis, the BiConvGRU-B model had a significantly higher percentage of mean absolute error (MAE) within the range of 0–1 TECU in all seasons compared to the BiConvLSTM-B model. Meanwhile, the BiConvGRU-B model outperformed the BiConvLSTM-B model with lower RMSE for each month of 2018. Full article
(This article belongs to the Special Issue International GNSS Service Validation, Application and Calibration)
Show Figures

Figure 1

15 pages, 3504 KiB  
Article
A Multi-GNSS/IMU Data Fusion Algorithm Based on the Mixed Norms for Land Vehicle Applications
by Chen Jiang, Dongbao Zhao, Qiuzhao Zhang and Wenkai Liu
Remote Sens. 2023, 15(9), 2439; https://doi.org/10.3390/rs15092439 - 6 May 2023
Cited by 6 | Viewed by 2229
Abstract
As a typical application of geodesy, the GNSS/INS (Global Navigation Satellite System and Inertial Navigation System) integrated navigation technique was developed and has been applied for decades. For the integrated systems with multiple sensors, data fusion is one of the key problems. As [...] Read more.
As a typical application of geodesy, the GNSS/INS (Global Navigation Satellite System and Inertial Navigation System) integrated navigation technique was developed and has been applied for decades. For the integrated systems with multiple sensors, data fusion is one of the key problems. As a well-known data fusion algorithm, the Kalman filter can provide optimal estimates with known parameters of the models and noises. In the literature, however, the data fusion algorithm of the GNSS/INS integrated navigation and positioning systems is performed under a certain norm, and performance of the conventional filtering algorithms are improved only under this fixed and limited frame. The mixed norm-based data fusion algorithm is rarely discussed. In this paper, a mixed norm-based data fusion algorithm is proposed, and the hypothesis test statistics are constructed and adopted based on the chi-square distribution. Using the land vehicle data collected through the multi-GNSS and the IMU (Inertial Measurement Unit), the proposed algorithm is tested and compared with the conventional filtering algorithms. Results show that the influences of the outlying measurements and the uncertain noises are weakened with the proposed data fusion algorithm, and the precision of the estimates is further improved. Meanwhile, the proposed algorithm provides an open issue for geodetic applications with mixed norms. Full article
(This article belongs to the Special Issue International GNSS Service Validation, Application and Calibration)
Show Figures

Figure 1

Back to TopTop