Biopolymer-Based Materials in Medical Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 11533

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Interests: thin polymer films; hydrogels; nanocomposites; superlyophilic surfaces; microfluidics

Special Issue Information

Dear Colleagues,

Biopolymer-based materials are materials that are primarily composed of biopolymers, which are natural polymers produced by living organisms. These polymers can be derived from renewable resources such as plants, animals, or microorganisms. In recent years, the use of biopolymer-based materials has steadily increased due to their high demand in medical applications. These materials play a significant role in various medical applications due to their biocompatibility, biodegradability, and versatility. The applications of biopolymer-based materials include drug delivery systems, tissue engineering, wound dressings, surgical sealants and adhesives, orthopedic implants, dental applications, diagnostic devices, vaccine delivery, and so on. Since the demand for polymers in medical applications has been significantly increasing, further advanced research on extracting biopolymer-based materials, exploring new materials, and developing the biopolymer-based materials industry is particularly important. 

In addition, although biodegradability is an advantage of biopolymer-based materials, it is also a disadvantage because they may easily suffer from wear and tear due to their intensive interaction with the body. Hence, further studies investigating the effect of their treatment and attempting to understand their related biological mechanisms can contribute to the efficient use of these materials in medical applications. 

Therefore, the current Special Issue on “Biopolymer-based Materials in Medical Applications” invites submissions of reviews and original papers that address any interesting topics concerning the effect of therapy with biopolymer-based materials, their biological mechanisms, and their applications.

Prof. Dr. Hsiuying Wang
Prof. Dr. Pengchao Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biopolymer-based materials
  • biopolymer-based materials therapy
  • biopolymer-based materials industry
  • biomedical applications
  • wound dressings
  • tissue engineering

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 2734 KiB  
Article
Formulation of Thermo-Sensitive In Situ Gels Loaded with Dual Spectrum Antibiotics of Azithromycin and Ofloxacin
by Raghad Alsheikh, Ádám Haimhoffer, Dániel Nemes, Zoltán Ujhelyi, Pálma Fehér, Liza Józsa, Gábor Vasvári, Ágota Pető, Dóra Kósa, Lajos Nagy, László Horváth, Bence Balázs and Ildikó Bácskay
Polymers 2024, 16(21), 2954; https://doi.org/10.3390/polym16212954 - 22 Oct 2024
Cited by 1 | Viewed by 1809
Abstract
In situ gels have been developed as an innovative strategy to prolong corneal residence time and enhance drug absorption compared to traditional eye drops. Our study aimed to formulate an ophthalmic in situ gel with a combination of two thermosensitive poloxamers, P407 and [...] Read more.
In situ gels have been developed as an innovative strategy to prolong corneal residence time and enhance drug absorption compared to traditional eye drops. Our study aimed to formulate an ophthalmic in situ gel with a combination of two thermosensitive poloxamers, P407 and P188, in an optimal ratio not only to increase the time of action but also to increase the solubility of selected antibiotics for the treatment of ophthalmic infections. Two BSC II class substances, Azithromycin and Ofloxacin, with different mechanisms of action, have been incorporated into the in situ gel system after determining their solubility. The antibiotics-loaded in situ gel formulation was evaluated for its clarity, pH, rheological properties, and gel characteristics of gelling time, temperature, and capacity. The formulation demonstrated satisfactory clarity, appropriate pH, effective gelation properties in simulated tear fluid, and suitable rheological characteristics. In addition, APIs release insight has been studied through a dissolution test, and the effectivity against sensitive and resistant bacterial strains has been proved through the antimicrobial study. Therefore, our in situ gel system based on thermosensitive poloxamers, with two hydrophobic antibiotics, AZM and OFX, can be considered a valuable approach for ophthalmic drug delivery with an enhancement of the antibiotics bioavailability through increasing the contact time with the ocular surface and enhancing patient compliance. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials in Medical Applications)
Show Figures

Figure 1

16 pages, 17053 KiB  
Article
Polygonatum sibiricum Polysaccharides Alleviate Depressive-like Symptoms in Chronic Restraint Stress-Induced Mice via Microglial Regulation in Prefrontal Cortex
by Zhong-Yu Yuan, Xuan Zhang, Zong-Zhong Yu, Xin-Yu Wang, Zi-Heng Zeng, Meng-Xuan Wei, Meng-Ting Qiu, Jun Wang, Jie Cheng and Li-Tao Yi
Polymers 2024, 16(16), 2358; https://doi.org/10.3390/polym16162358 - 20 Aug 2024
Cited by 1 | Viewed by 1116
Abstract
Microglia respond to stressors by secreting cytokines or growth factors, playing a crucial role in maintaining brain homeostasis. While the antidepressant-like effects of Polygonatum sibiricum polysaccharides (PSPs) have been observed in mice, their potential effectiveness involving microglial regulation remains unknown. This study investigates [...] Read more.
Microglia respond to stressors by secreting cytokines or growth factors, playing a crucial role in maintaining brain homeostasis. While the antidepressant-like effects of Polygonatum sibiricum polysaccharides (PSPs) have been observed in mice, their potential effectiveness involving microglial regulation remains unknown. This study investigates the antidepressant-like mechanism of PSP by regulating microglial phenotype and signaling pathways in the prefrontal cortex of chronic restraint stress (CRS)-induced mice. PSP was extracted, purified, characterized, and orally administered to CRS mice. High-performance gel permeation chromatography (HPGPC) revealed that PSP has a molecular weight of 5.6 kDa. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed that PSP exhibited a layered structure with densely packed, irregular surfaces. PSP treatment significantly increased sucrose preference (low: 71%, p < 0.01; medium: 69%, p < 0.05; high: 75%, p < 0.001 vs. CRS: 58%) and reduced immobility time (low: 74 s, p < 0.01; medium: 68 s, p < 0.01; high: 79 s, p < 0.05 vs. CRS: 129 s), indicating the alleviation of depressive-like behaviors. PSP inhibited microglial activation (PSP, 131/mm2 vs. CRS, 173/mm2, p = 0.057), reversing CRS-induced microglial hypertrophy and hyper-ramification. Furthermore, PSP inactivated microglial activation by inhibiting NLRP3/ASC/caspase-1/IL-1β signaling pathways, increasing BDNF synthesis and activating brain-derived neurotrophic factor (BDNF)-mediated neurogenesis (PSP, 80/per DG vs. CRS, 49/per DG, p < 0.01). In conclusion, PSP exerts antidepressant-like effects through the regulation of microglial activity and neuroinflammatory pathways, indicating it as a potential natural compound for depression treatment. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials in Medical Applications)
Show Figures

Figure 1

13 pages, 4047 KiB  
Article
Chaperone Copolymer-Assisted Catalytic Hairpin Assembly for Highly Sensitive Detection of Adenosine
by Yazhen Liao, Xiaoxue Yin, Wenqian Liu, Zhenrui Du and Jie Du
Polymers 2024, 16(15), 2179; https://doi.org/10.3390/polym16152179 - 31 Jul 2024
Viewed by 1254
Abstract
Adenosine is an endogenous molecule that plays a vital role in biological processes. Research indicates that abnormal adenosine levels are associated with a range of diseases. The development of sensors capable of detecting adenosine is pivotal for early diagnosis of disease. For example, [...] Read more.
Adenosine is an endogenous molecule that plays a vital role in biological processes. Research indicates that abnormal adenosine levels are associated with a range of diseases. The development of sensors capable of detecting adenosine is pivotal for early diagnosis of disease. For example, elevated adenosine levels are closely associated with the onset and progression of cancer. In this study, we designed a novel DNA biosensor utilizing chaperone copolymer-assisted catalytic hairpin assembly for highly sensitive detection of adenosine. The functional probe comprises streptavidin magnetic beads, an aptamer, and a catalytic chain. In the presence of adenosine, it selectively binds to the aptamer, displacing the catalytic chain into the solution. The cyclic portion of H1 hybridizes with the catalytic strand, while H2 hybridizes with the exposed H1 fragment to form an H1/H2 complex containing a G-quadruplex. Thioflavin T binds specifically to the G-quadruplex, generating a fluorescent signal. As a nucleic acid chaperone, PLL-g-Dex expedites the strand exchange reaction, enhancing the efficiency of catalytic hairpin assembly, thus amplifying the signal and reducing detection time. The optimal detection conditions were determined to be a temperature of 25 °C and a reaction time of 10 min. Demonstrating remarkable sensitivity and selectivity, the sensor achieved a lowest limit of detection of 9.82 nM. Furthermore, it exhibited resilience to interference in complex environments such as serum, presenting an effective approach for rapid and sensitive adenosine detection. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials in Medical Applications)
Show Figures

Figure 1

10 pages, 2342 KiB  
Article
Preparation of Single-Helical Curdlan Hydrogel and Its Activation with Coagulation Factor G
by Geying Ru, Xiaoshuang Yan, Huijuan Wang and Jiwen Feng
Polymers 2024, 16(10), 1323; https://doi.org/10.3390/polym16101323 - 8 May 2024
Viewed by 1743
Abstract
β-1,3-glucans are a kind of natural polysaccharide with immunomodulatory, antitumor, and anti-inflammatory properties. Curdlan, as the simplest linear β-1,3-glucan, possesses a variety of biological activities and thermogelation properties. However, due to the complexity and variability of the conformations of curdlan, the exact structure–activity [...] Read more.
β-1,3-glucans are a kind of natural polysaccharide with immunomodulatory, antitumor, and anti-inflammatory properties. Curdlan, as the simplest linear β-1,3-glucan, possesses a variety of biological activities and thermogelation properties. However, due to the complexity and variability of the conformations of curdlan, the exact structure–activity relationship remains unclear. We prepare a chemically crosslinked curdlan hydrogel with the unique single-helical skeleton (named S gel) in 0.4 wt% NaOH at 40 °C, confirmed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). X-ray diffractometry (XRD) data show that S gel maintains the single-helical crystal structure, and the degree of crystallinity of the S gel is ~24%, which is slightly lower than that of the raw powder (~31%). Scanning electron microscopy (SEM) reveals that S gel has a continuous network structure, with large pores measuring 50–200 μm, which is consistent with its high swelling property. Using the 13C high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) method, we determine that most of the single-helical skeleton carbon signals in the swollen S gel are visible, suggesting that the single-helical skeleton of S gel exhibits fascinating mobility at room temperature. Finally, we reveal that the binding of S gel to coagulation Factor G from tachypleus amebocyte lysate increases and saturates at 20 μL tachypleus amebocyte lysate per mg of S gel. Our prepared S gel can avoid the transformation of curdlan conformations and retain the bioactivity of binding to coagulation Factor G, making it a valuable material for use in the food industry and the pharmaceutical field. This work deepens the understanding of the relationship between the single-helical structure and the activity of curdlan, promoting the development and application of β-1,3-glucans. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials in Medical Applications)
Show Figures

Figure 1

Review

Jump to: Research

42 pages, 9445 KiB  
Review
Polymers as Efficient Non-Viral Gene Delivery Vectors: The Role of the Chemical and Physical Architecture of Macromolecules
by Majad Khan
Polymers 2024, 16(18), 2629; https://doi.org/10.3390/polym16182629 - 18 Sep 2024
Cited by 3 | Viewed by 2914
Abstract
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns [...] Read more.
Gene therapy is the technique of inserting foreign genetic elements into host cells to achieve a therapeutic effect. Although gene therapy was initially formulated as a potential remedy for specific genetic problems, it currently offers solutions for many diseases with varying inheritance patterns and acquired diseases. There are two major groups of vectors for gene therapy: viral vector gene therapy and non-viral vector gene therapy. This review examines the role of a macromolecule’s chemical and physical architecture in non-viral gene delivery, including their design and synthesis. Polymers can boost circulation, improve delivery, and control cargo release through various methods. The prominent examples discussed include poly-L-lysine, polyethyleneimine, comb polymers, brush polymers, and star polymers, as well as hydrogels and natural polymers and their modifications. While significant progress has been made, challenges still exist in gene stabilization, targeting specificity, and cellular uptake. Overcoming cytotoxicity, improving delivery efficiency, and utilizing natural polymers and hybrid systems are vital factors for prospects. This comprehensive review provides an illuminating overview of the field, guiding the way toward innovative non-viral-based gene delivery solutions. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials in Medical Applications)
Show Figures

Figure 1

20 pages, 5992 KiB  
Review
Recent Progress in Polyion Complex Nanoparticles with Enhanced Stability for Drug Delivery
by Xinlin Ma, Tianyi Zhao, Xiaoyue Ren, Hui Lin and Pan He
Polymers 2024, 16(13), 1871; https://doi.org/10.3390/polym16131871 - 30 Jun 2024
Cited by 1 | Viewed by 1955
Abstract
Polyion complex (PIC) nanoparticles, including PIC micelles and PICsomes, are typically composed of poly(ethylene glycol) block copolymers coupled with oppositely charged polyelectrolytes or therapeutic agents via electrostatic interaction. Due to a simple and rapid preparation process with high drug-loading efficiency, PIC nanoparticles are [...] Read more.
Polyion complex (PIC) nanoparticles, including PIC micelles and PICsomes, are typically composed of poly(ethylene glycol) block copolymers coupled with oppositely charged polyelectrolytes or therapeutic agents via electrostatic interaction. Due to a simple and rapid preparation process with high drug-loading efficiency, PIC nanoparticles are beneficial to maintaining the chemical integrity and high biological activity of the loaded drugs. However, the stability of PIC nanoparticles can be disrupted in high-ionic-strength solutions because electrostatic interaction is the DRIVING force; these disruptions can thus impair drug delivery. Herein, we summarize the advances in the use of PIC nanoparticles for delivery of charged drugs, focusing on the different chemical and physical strategies employed to enhance their stability, including enhancing the charge density, crosslinking, increasing hydrophobic interactions, forming hydrogen bonds, and the development of PIC-based gels. In particular, we describe the use of PIC nanoparticles to load peptide antibiotics targeting antibiotic-resistant and biofilm-related diseases and the use of nanoparticles that load chemotherapeutics and gaseous donors for cancer treatment. Furthermore, the application of PIC nanoparticles as magnetic resonance imaging contrast agents is summarized for the first time. Therefore, this review is of great significance for advances in the use of polymeric nanoparticles for functional drug delivery. Full article
(This article belongs to the Special Issue Biopolymer-Based Materials in Medical Applications)
Show Figures

Figure 1

Back to TopTop