Chaperone Copolymer-Assisted Catalytic Hairpin Assembly for Highly Sensitive Detection of Adenosine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Equipment
2.3. Preparation of Reagents
2.4. Synthesis of PLL-g-Dex
2.5. Preparation of Streptavidin Magnetic Beads Probe
2.6. Fluorescence Detection
3. Results and Discussion
3.1. Principle of Adenosine Detection
3.2. Feasibility Analysis
3.3. Optimization of Experimental Conditions
3.4. Detection Performance of Sensor
3.5. Specificity Analysis
3.6. Detection in Serum Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pasquini, S.; Contri, C.; Merighi, S.; Gessi, S.; Borea, P.A.; Varani, K.; Vincenzi, F. Adenosine Receptors in Neuropsychiatric Disorders: Fine Regulators of Neurotransmission and Potential Therapeutic Targets. Int. J. Mol. Sci. 2022, 23, 1219. [Google Scholar] [CrossRef] [PubMed]
- Muller-Haegele, S.; Muller, L.; Whiteside, T.L. Immunoregulatory activity of adenosine and its role in human cancer progression. Expert Rev. Clin. Immunol. 2014, 10, 897–914. [Google Scholar] [CrossRef] [PubMed]
- Peleli, M.; Carlstrom, M. Adenosine signaling in diabetes mellitus and associated cardiovascular and renal complications. Mol. Asp. Med. 2017, 55, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Guieu, R.; Deharo, J.C.; Maille, B.; Crotti, L.; Torresani, E.; Brignole, M.; Parati, G. Adenosine and the Cardiovascular System: The Good and the Bad. J. Clin. Med. 2020, 9, 1366. [Google Scholar] [CrossRef] [PubMed]
- Porkka-Heiskanen, T.; Alanko, L.; Kalinchuk, A.; Stenberg, D. Adenosine and sleep. Sleep Med. Rev. 2002, 6, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, L.; Pacher, P.; Hasko, G. Adenosine and inflammation: It’s time to (re)solve the problem. Trends Pharmacol. Sci. 2022, 43, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Adebiyi, M.G.; Luo, J.; Sun, K.; Le, T.T.; Zhang, Y.; Wu, H.; Zhao, S.; Karmouty-Quintana, H.; Liu, H.; et al. Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through Neuro-immune Interaction. Cell Rep. 2016, 16, 106–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Kong, C.; Liu, Q.; Zuo, X.; Li, K.; Chen, Z. Colorimetric adenosine assay based on the self-assembly of aptamer-functionalized gold nanorods. Mikrochim. Acta 2019, 186, 587. [Google Scholar] [CrossRef] [PubMed]
- Villa, J.E.L.; Pasquini, C.; Poppi, R.J. Surface-enhanced Raman spectroscopy and MCR-ALS for the selective sensing of urinary adenosine on filter paper. Talanta 2018, 187, 99–105. [Google Scholar] [CrossRef]
- Fu, L.; Amato, N.J.; Wang, P.; McGowan, S.J.; Niedernhofer, L.J.; Wang, Y. Simultaneous Quantification of Methylated Cytidine and Adenosine in Cellular and Tissue RNA by Nano-Flow Liquid Chromatography-Tandem Mass Spectrometry Coupled with the Stable Isotope-Dilution Method. Anal. Chem. 2015, 87, 7653–7659. [Google Scholar] [CrossRef]
- Krishnan, R.G.; Rejithamol, R.; Saraswathyamma, B. Non-enzymatic electrochemical sensor for the simultaneous determination of adenosine, adenine and uric acid in whole blood and urine. Microchem. J. 2020, 155, 104745. [Google Scholar] [CrossRef]
- Guo, Z.; Tan, X.; Yuan, H.; Zhang, L.; Wu, J.; Yang, Z.; Qu, K.; Wan, Y. Bis-enzyme cascade CRISPR-Cas12a platform for miRNA detection. Talanta 2023, 252, 123837. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Q.; Weng, X.; Du, Y.; Zhou, X. NEase-based amplification for detection of miRNA, multiple miRNAs and circRNA. Anal. Chim. Acta 2021, 1145, 52–58. [Google Scholar] [CrossRef]
- Chen, H.J.; Hu, Y.; Yao, P.; Ning, D.; Zhang, Y.P.; Wang, Z.G.; Liu, S.L.; Pang, D.W. Accurate and Efficient Lipoprotein Detection Based on the HCR-DNAzyme Platform. Anal. Chem. 2021, 93, 6128–6134. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ruan, H.; Zhang, J.; Wang, Y.; Guo, M.; Ke, T.; Luo, J.; Yang, M. CHA-based dual signal amplification immunofluorescence biosensor for ultrasensitive detection of dimethomorph. Anal. Chim. Acta 2022, 1227, 340323. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Han, L.; Fang, Y.; Lai, M.; Zhao, M.; Miao, X.; Zhang, H. Fluorescent dual-mode assay of plant viral disease with polymerase chain reaction amplification. Microchem. J. 2023, 193, 109217. [Google Scholar] [CrossRef]
- Du, J.; Wu, L.; Shimada, N.; Kano, A.; Maruyama, A. Polyelectrolyte-assisted transconformation of a stem-loop DNA. Chem. Commun. 2013, 49, 475–477. [Google Scholar] [CrossRef]
- Choi, S.W.; Kano, A.; Maruyama, A. Activation of DNA strand exchange by cationic comb-type copolymers: Effect of cationic moieties of the copolymers. Nucleic Acids Res. 2008, 36, 342–351. [Google Scholar] [CrossRef]
- Moriyama, R.; Shimada, N.; Kano, A.; Maruyama, A. DNA assembly and re-assembly activated by cationic comb-type copolymer. Biomaterials 2011, 32, 2351–2358. [Google Scholar] [CrossRef]
- Wang, J.; Shimada, N.; Maruyama, A. Cationic copolymer-augmented DNA hybridization chain reaction. ACS Appl. Mater. Interfaces 2022, 14, 39396–39403. [Google Scholar] [CrossRef]
- Wang, J.; Raito, H.; Shimada, N.; Maruyama, A. A Cationic Copolymer Enhances Responsiveness and Robustness of DNA Circuits. Small 2023, 19, e2304091. [Google Scholar] [CrossRef]
- Hanpanich, O.; Saito, K.; Shimada, N.; Maruyama, A. One-step isothermal RNA detection with LNA-modified MNAzymes chaperoned by cationic copolymer. Biosens. Bioelectron. 2020, 165, 112383. [Google Scholar] [CrossRef] [PubMed]
- Han, J.L.; Fang, C.C.; Ouyang, P.; Qing, Y.; Yang, Y.X.; Li, H.Y.; Wang, Z.C.; Du, J. Chaperone copolymer assisted G-quadruplex-based signal amplification assay for highly ensitive detection of VEGF. Biosensors 2022, 12, 262. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, Y.; Liao, W.; Wang, W.; Wu, L. G-quadruplex specific thioflavin T-based label-free fluorescence aptasensor for rapid detection of tetracycline. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 238, 118406. [Google Scholar] [CrossRef]
- Tang, Z.; Liu, H.; Chen, M.; Ma, C. Label-free one-step fluorescent method for the detection of endonuclease activity based on thioflavin T/G-quadruplex. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 228, 117823. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yang, Z.; Huang, T.; Li, M.M.; Duan, W.; Xie, B.; Chen, J.X.; Dai, Z.; Chen, J. Label-free and highly sensitive APE1 detection based on rolling circle amplification combined with G-quadruplex. Talanta 2022, 244, 123404. [Google Scholar] [CrossRef]
- Yang, D.W.; Shi, L.; Zhao, Z.; Fu, Y.; Sun, H.X.; Li, Y.; Tang, Y.; Zhang, X.F. A Lead (II) Ion Sensor Based on Selective Recognition of Gquadruplex for Ethyl-substitutive Thioflavin T. ChemistrySelect 2019, 4, 10787–10791. [Google Scholar] [CrossRef]
- He, J.; Zhang, T.; Jiang, B.; Xiang, Y.; Yuan, R. Target-dependent dual strand extension recycling amplifications for non-label and ultrasensitive sensing of serum microRNA. Talanta 2020, 210, 120651. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Liu, J.; Lv, Y.; Su, X. Construction of a Label-Free Ratiometric Biosensor Based on Target Recycling Amplification and Hg-ZnSe QDs for Assay of BChE and OPs. J. Agric. Food Chem. 2023, 71, 11884–11891. [Google Scholar] [CrossRef]
- Liao, Y.Z.; Yang, Y.X.; Qing, Y.; Du, J. Enzyme-Free Signal Amplification Strategy via Chaperone Copolymer-Accelerated Hybridization for Highly Sensitive Detection of Adenosine. Chemosensors 2023, 11, 522. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, J.; Pei, Y.; Fan, R.; Du, J. Chaperone Copolymer-Assisted Aptamer-Patterned DNA Hydrogels for Triggering Spatiotemporal Release of Protein. ACS Appl. Bio Mater. 2018, 1, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, Y.; Yu, F.; Niu, C.; Du, Z.; Chen, Y.; Du, J. Rapid and annealing-free self-assembly of DNA building blocks for 3D hydrogel chaperoned by cationic comb-type copolymers. J. Biomater. Sci. Polym. Ed. 2017, 28, 1511–1524. [Google Scholar] [CrossRef] [PubMed]
- Han, J.L.; Wu, J.C.; Du, J. Fluorescent DNA biosensor for single-base mismatch detection ssisted by cationic comb-Type copolymer. Molecules 2019, 24, 575. [Google Scholar] [CrossRef] [PubMed]
- Gliga, L.-E.; Iacob, B.-C.; Cheșcheș, B.; Florea, A.; Barbu-Tudoran, L.; Bodoki, E.; Oprean, R. Electrochemical platform for the detection of adenosine using a sandwich-structured molecularly imprinted polymer-based sensor. Electrochim. Acta 2020, 354, 136656. [Google Scholar] [CrossRef]
- Coria-Oriundo, L.L.; Ceretti, H.; Roupioz, Y.; Battaglini, F. Redox Polyelectrolyte Modified Gold Nanoparticles Enhance the Detection of Adenosine in an Electrochemical Split-Aptamer Assay. ChemistrySelect 2020, 5, 11391–11398. [Google Scholar] [CrossRef]
- Yousefi, S.; Saraji, M. Optical aptasensor based on silver nanoparticles for the colorimetric detection of adenosine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 213, 1–5. [Google Scholar] [CrossRef]
- Xu, X.; Wei, H.; Jiang, W. A target triggered proximity combination-based fluorescence sensing strategy for adenosine detection. Analyst 2017, 142, 2247–2252. [Google Scholar] [CrossRef]
Name | Sequence (5′-3′) |
---|---|
Aptamer | biotin-TTTTTTTTTACCTGGGGGAGTATTGCGGAGGAAGGT |
tDNA | TTCCTCCGCAATGATAGATA |
H1-1 | CCACCCATTCCTATGTATCTATCATTGCGGAGGAATGGGTGGGTGGGTGGG |
H2-1 | ATTCCTCTGTATCTATTCCTCCGCAATGATAGATACATAGGAATGGGTGG |
H1-2 | CCACCCAATTCCTCATATCTATCATTGCGGAGGAATTGGGTGGGTGGGTGGG |
H2-2 | AATTCCTCATATCTATTCCTCCGCAATGATAGATATGAGGAATTGGGTGG |
H1-3 | CCACCCACATTCCTCCATATCTATCATTGCGGAGGAATGTGGGTGGGTGGGTGGG |
H2-3 | ACATTCCTCCATATCTGATTCCTCCGCAATGATAGATATGGAGGAATGTGGGTGG |
Detection Technique | Linear Range | LOD | Reference |
---|---|---|---|
Electrochemistry | 0.37–37.4 µM | 210 nM | [34] |
Electrochemistry | 5–75 nM | 3.1 nM | [35] |
Colorimetry | 60–280 nM | 21 nM | [36] |
Fluorescence | 0.5–20 µM | 84 nM | [37] |
Fluorescence | 25–600 nM | 9.82 nM | This work |
Added (nM) | Found (nM) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|
100 | 95.52 | 95.52% | 2.34 |
200 | 193.67 | 96.84% | 1.66 |
500 | 497.87 | 99.57% | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Y.; Yin, X.; Liu, W.; Du, Z.; Du, J. Chaperone Copolymer-Assisted Catalytic Hairpin Assembly for Highly Sensitive Detection of Adenosine. Polymers 2024, 16, 2179. https://doi.org/10.3390/polym16152179
Liao Y, Yin X, Liu W, Du Z, Du J. Chaperone Copolymer-Assisted Catalytic Hairpin Assembly for Highly Sensitive Detection of Adenosine. Polymers. 2024; 16(15):2179. https://doi.org/10.3390/polym16152179
Chicago/Turabian StyleLiao, Yazhen, Xiaoxue Yin, Wenqian Liu, Zhenrui Du, and Jie Du. 2024. "Chaperone Copolymer-Assisted Catalytic Hairpin Assembly for Highly Sensitive Detection of Adenosine" Polymers 16, no. 15: 2179. https://doi.org/10.3390/polym16152179
APA StyleLiao, Y., Yin, X., Liu, W., Du, Z., & Du, J. (2024). Chaperone Copolymer-Assisted Catalytic Hairpin Assembly for Highly Sensitive Detection of Adenosine. Polymers, 16(15), 2179. https://doi.org/10.3390/polym16152179