Special Issue "Advanced Polymer Nanocomposites"

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Applications".

Deadline for manuscript submissions: 31 May 2020.

Special Issue Editors

Dr. Ting-Yu Liu
E-Mail Website1 Website2 Website3
Guest Editor
Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
Interests: polymer nanocomposites; electrochemical and atmospheric plasma-induced polymerization; opto-electric sensing; nanomaterial self-assembly; drug controled release
Dr. Yu-Wei Cheng
E-Mail Website
Guest Editor
Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan
Interests: polymer nanocomposites; polymer synthesis; organic–inorganic nanohybrids

Special Issue Information

Dear Colleagues,

Polymer nanocomposites are currently of industrial interest and popular in the field of nanomaterials. As a result, scientists are working to improve the performance of polymeric matrices and inorganic nanomaterials, such as via light magnetic behaviors, electrical/thermal conductivity, toughness, stiffness and mechanical strength. The inorganic quantum dots/nanoparticles, nanorods/nanotubes, and 2D materials (such as graphene-based nanosheets) can be decorated in the polymer matrix by chemical synthesis or physical blending for improved performance. Thus, the technology with which to fabricate the homogeneous dispersion of the fillers in the polymer matrix has been crucial to the field of nanomaterials.

This Special Issue, “Advanced Polymer Nanocomposites”, will collect the innovative original research and review papers that focus on the scientific discussion and practical applications in the field of functional polymer nanocomposites. Examples of acceptable research topics are: (a) green energy, (b) biomedical materials, (c) opto-electronics and sensing, (d) coating, (e) carbon, (f) magnetic materials, and (g) other functional polymer nanocomposites. Topics of special interest include but are not limited to the preparation, chemical synthesis, structural design, material selection, characterization, morphology and applications of advanced polymer nanocomposites. We hope that the Special Issue will promote academic research exchange, as well as identifying and responding to the tremendous challenges currently faced in this burgeoning field.

Dr. Ting-Yu Liu
Dr. Yu-Wei Cheng
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • green energy
  • biomedical materials
  • opto-electronics and sensing
  • coating
  • carbon
  • magnetic materials
  • other functional polymer nanocomposites

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Effect of CNTs Additives on the Energy Balance of Carbon/Epoxy Nanocomposites during Dynamic Compression Test
Polymers 2020, 12(1), 194; https://doi.org/10.3390/polym12010194 - 11 Jan 2020
Abstract
Previous research has shown that nanocomposites show not only enhancements in mechanical properties (stiffness, fracture toughness) but also possess remarkable energy absorption characteristics. However, the potential of carbon nanotubes (CNTs) as nanofiller in reinforced epoxy composites like glass fiber-reinforced polymers (GFRP) or carbon [...] Read more.
Previous research has shown that nanocomposites show not only enhancements in mechanical properties (stiffness, fracture toughness) but also possess remarkable energy absorption characteristics. However, the potential of carbon nanotubes (CNTs) as nanofiller in reinforced epoxy composites like glass fiber-reinforced polymers (GFRP) or carbon fiber-reinforced polymers (CFRP) under dynamic testing is still underdeveloped. The goal of this study is to investigate the effect of integrating nanofillers such as CNTs into the epoxy matrix of carbon fiber reinforced polymer composites (CFRP) on their dynamic energy absorption potential under impact. An out-of-plane compressive test at high strain rates was performed using a Split Hopkinson Pressure Bar (SHPB), and the results were analyzed to study the effect of changing the concentration of CNTs on the energy absorption properties of the nanocomposites. A strong correlation between strain rates and CNT mass fractions was found out, showing that an increase in percentage of CNTs could enhance the dynamic properties and energy absorption capabilities of fiber-reinforced composites. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites)
Show Figures

Graphical abstract

Open AccessArticle
Transparent Polyimide/Organoclay Nanocomposite Films Containing Different Diamine Monomers
Polymers 2020, 12(1), 135; https://doi.org/10.3390/polym12010135 - 06 Jan 2020
Abstract
Poly (amic acid) s (PAAs) were synthesized using 4,4′-(hexafluoroisopropyl-idene) diphthalic anhydride (6FDA) and two types of diamines—bis(3-aminophenyl) sulfone (BAS) and bis(3-amino-4-hydroxyphenyl) sulfone (BAS-OH). Two series of transparent polyimide (PI) hybrid films were synthesized by solution intercalation polymerization and thermal imidization using various concentrations [...] Read more.
Poly (amic acid) s (PAAs) were synthesized using 4,4′-(hexafluoroisopropyl-idene) diphthalic anhydride (6FDA) and two types of diamines—bis(3-aminophenyl) sulfone (BAS) and bis(3-amino-4-hydroxyphenyl) sulfone (BAS-OH). Two series of transparent polyimide (PI) hybrid films were synthesized by solution intercalation polymerization and thermal imidization using various concentrations (from 0 to 1 wt%) of organically modified clay Cloisite 30B in PAA solution. The thermo-mechanical properties, morphology, and optical transparency of the hybrid films were observed. The transmission electronic microscopy (TEM) results showed that some of the clays were agglomerated, but most of them showed dispersed nanoscale clay. The effects of -OH groups on the properties of the two PI hybrids synthesized using BAS and BAS-OH monomers were compared. The BAS PI hybrids were superior to the BAS-OH PI hybrids in terms of thermal stability and optical transparency, but the BAS-OH PI hybrids exhibited higher glass transition temperatures (Tg) and mechanical properties. Analysis of the thermal properties and tensile strength showed that the highest critical concentration of organoclay was 0.50 wt%. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites)
Show Figures

Figure 1

Open AccessArticle
The Electrochemical Oxidation of Hydroquinone and Catechol through a Novel Poly-geminal Dicationic Ionic Liquid (PGDIL)–TiO2 Composite Film Electrode
Polymers 2019, 11(11), 1907; https://doi.org/10.3390/polym11111907 - 19 Nov 2019
Cited by 1
Abstract
A novel poly-geminal dicationic ionic liquid (PGDIL)-TiO2/Au composite film electrode was successfully prepared by electrochemical polymerization of 1,4-bis(3-(m-aminobenzyl)imidazol-1-yl)butane bis(hexafluorinephosphate) containing polymerizable anilino groups in the electrolyte containing nano-TiO2. The basic properties of PGDIL–TiO2/Au composite films were studied [...] Read more.
A novel poly-geminal dicationic ionic liquid (PGDIL)-TiO2/Au composite film electrode was successfully prepared by electrochemical polymerization of 1,4-bis(3-(m-aminobenzyl)imidazol-1-yl)butane bis(hexafluorinephosphate) containing polymerizable anilino groups in the electrolyte containing nano-TiO2. The basic properties of PGDIL–TiO2/Au composite films were studied by SEM, cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. The SEM results revealed that the PGDIL–TiO2 powder has a more uniform and smaller particle size than the PGDIL. The cyclic voltammetry results showed that the catalytic effect on electrochemical oxidation of hydroquinone and catechol of the PGDIL–TiO2 electrode is the best, yet the Rct of PGDIL–TiO2 electrode is higher than that of PGDIL and TiO2 electrode, which is caused by the synergistic effect between TiO2 and PGDIL. The PGDIL–TiO2/Au composite electrode presents a good enhancement effect on the reversible electrochemical oxidation of hydroquinone and catechol, and differential pulse voltammetry tests of the hydroquinone and catechol in a certain concentration range revealed that the PGDIL–TiO2/Au electrode enables a high sensitivity to the differentiation and detection of hydroquinone and catechol. Furthermore, the electrochemical catalytic mechanism of the PGDIL–TiO2/Au electrode was studied. It was found that the recombination of TiO2 improved the reversibility and activity of the PGDIL–TiO2/Au electrode for the electrocatalytic reaction of HQ and CC. The PGDIL–TiO2/Au electrode is also expected to be used for catalytic oxidation and detection of other organic pollutants containing –OH groups. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites)
Show Figures

Graphical abstract

Open AccessArticle
Ultra-Sensitive Piezo-Resistive Sensors Constructed with Reduced Graphene Oxide/Polyolefin Elastomer (RGO/POE) Nanofiber Aerogels
Polymers 2019, 11(11), 1883; https://doi.org/10.3390/polym11111883 - 14 Nov 2019
Abstract
Flexible wearable pressure sensors have received extensive attention in recent years because of the promising application potentials in health management, humanoid robots, and human machine interfaces. Among the many sensory performances, the high sensitivity is an essential requirement for the practical use of [...] Read more.
Flexible wearable pressure sensors have received extensive attention in recent years because of the promising application potentials in health management, humanoid robots, and human machine interfaces. Among the many sensory performances, the high sensitivity is an essential requirement for the practical use of flexible sensors. Therefore, numerous research studies are devoted to improving the sensitivity of the flexible pressure sensors. The fiber assemblies are recognized as an ideal substrate for a highly sensitive piezoresistive sensor because its three-dimensional porous structure can be easily compressed and can provide high interconnection possibilities of the conductive component. Moreover, it is expected to achieve high sensitivity by raising the porosity of the fiber assemblies. In this paper, the three-dimensional reduced graphene oxide/polyolefin elastomer (RGO/POE) nanofiber composite aerogels were prepared by chemical reducing the graphene oxide (GO)/POE nanofiber composite aerogels, which were obtained by freeze drying the mixture of the GO aqueous solution and the POE nanofiber suspension. It was found that the volumetric shrinkage of thermoplastic POE nanofibers during the reduction process enhanced the compression mechanical strength of the composite aerogel, while decreasing its sensitivity. Therefore, the composite aerogels with varying POE nanofiber usage were prepared to balance the sensitivity and working pressure range. The results indicated that the composite aerogel with POE nanofiber/RGO proportion of 3:3 was the optimal sample, which exhibits high sensitivity (ca. 223 kPa−1) and working pressure ranging from 0 to 17.7 kPa. In addition, the composite aerogel showed strong stability when it is either compressed with different frequencies or reversibly compressed and released 5000 times. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites)
Show Figures

Graphical abstract

Open AccessArticle
Structural Design of Three-Dimensional Graphene/Nano Filler (Al2O3, BN, or TiO2) Resins and Their Application to Electrically Conductive Adhesives
Polymers 2019, 11(10), 1713; https://doi.org/10.3390/polym11101713 - 18 Oct 2019
Abstract
In this study, we designed a three-dimensional structure of electrically conductive adhesives (ECAs) by adding three different kinds of nano filler, including BN, TiO2, and Al2O3 particles, into a few-layered graphene (FLG)/polymer composite to avoid FLG aggregation. Three [...] Read more.
In this study, we designed a three-dimensional structure of electrically conductive adhesives (ECAs) by adding three different kinds of nano filler, including BN, TiO2, and Al2O3 particles, into a few-layered graphene (FLG)/polymer composite to avoid FLG aggregation. Three different lateral sizes of FLG (FLG3, FLG8, and FLG20) were obtained from graphite (G3, G8, and G20) by a green, facile, low-cost, and scalable jet cavitation process. The corresponding characterizations, such as Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM), verified the successful preparation of graphene flakes. Based on the results of four-point probe measurements, FLG20 demonstrated the lowest sheet resistance value of ~0.021 Ω/■. The optimized ECAs’ composition was a 60% solid content of FLG20 with the addition 2 wt.% of Al2O3. The sheet resistance value was as low as 51.8 Ω/■, which was a reduction of 73% compared to that of pristine FLG/polymer. These results indicate that this method not only paves the way for the cheaper and safer production of graphene, but also holds great potential for applications in energy-related technologies. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites)
Show Figures

Graphical abstract

Open AccessArticle
Using Methacryl-Polyhedral Oligomeric Silsesquioxane as the Thermal Stabilizer and Plasticizer in Poly(vinyl chloride) Nanocomposites
Polymers 2019, 11(10), 1711; https://doi.org/10.3390/polym11101711 - 18 Oct 2019
Cited by 1
Abstract
In this study, we investigated the influence of methacryl-functionalized polyhedral oligomeric silsesquioxane (MA-POSS) nanoparticles as a plasticizer and thermal stabilizer for a poly(vinyl chloride) (PVC) homopolymer and for a poly(vinyl chloride)/dissononyl cyclohexane-1,2-dicarboxylate (PVC/DINCH) binary blend system. The PVC and the PVC/DINCH blend both [...] Read more.
In this study, we investigated the influence of methacryl-functionalized polyhedral oligomeric silsesquioxane (MA-POSS) nanoparticles as a plasticizer and thermal stabilizer for a poly(vinyl chloride) (PVC) homopolymer and for a poly(vinyl chloride)/dissononyl cyclohexane-1,2-dicarboxylate (PVC/DINCH) binary blend system. The PVC and the PVC/DINCH blend both became flexible, with decreases in their glass transition temperatures and increases in their thermal decomposition temperatures, upon an increase in MA-POSS content, the result of hydrogen bonding between the C=O groups of MA-POSS and the H–CCl units of the PVC, as determined using infrared spectroscopy. Furthermore, the first thermal decomposition temperature of the pure PVC, due to the emission of HCl, increased from 290 to 306 °C, that is, the MA-POSS nanoparticles had a retarding effect on the decomposition of the PVC matrix. In tensile tests, all the PVC/DINCH/MA-POSS ternary blends were transparent and displayed flexibility, but their modulus and tensile strength both decreased, while their elongation properties increased, upon an increase in MA-POSS concentration, both before and after thermal annealing. In contrast, the elongation decreased, but the modulus and tensile strength increased, after thermal annealing at 100 °C for 7 days. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop