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Abstract: Previous research has shown that nanocomposites show not only enhancements in
mechanical properties (stiffness, fracture toughness) but also possess remarkable energy absorption
characteristics. However, the potential of carbon nanotubes (CNTs) as nanofiller in reinforced epoxy
composites like glass fiber-reinforced polymers (GFRP) or carbon fiber-reinforced polymers (CFRP)
under dynamic testing is still underdeveloped. The goal of this study is to investigate the effect
of integrating nanofillers such as CNTs into the epoxy matrix of carbon fiber reinforced polymer
composites (CFRP) on their dynamic energy absorption potential under impact. An out-of-plane
compressive test at high strain rates was performed using a Split Hopkinson Pressure Bar (SHPB),
and the results were analyzed to study the effect of changing the concentration of CNTs on the energy
absorption properties of the nanocomposites. A strong correlation between strain rates and CNT
mass fractions was found out, showing that an increase in percentage of CNTs could enhance the
dynamic properties and energy absorption capabilities of fiber-reinforced composites.

Keywords: CFRP; Carbon nanotubes; Nanocomposites; Split Hopkinson Pressure Bar; Energy
absorption

1. Introduction

Energy absorption is considered to be one of the most important functions of structural materials,
especially when subjected to an accidental collision or sudden shock. It is a crucial condition for
structural crashworthiness and damage assessment for example, in designing rail cars, aircraft,
automobiles and rotorcraft. During the design phase, the crashworthy structure is manufactured in
such a manner that it can halt the transfer of the energy to the passenger compartment by absorbing
all the impact energy in a controlled manner during crash. Moreover, in civil construction, many
structures lack energy-absorbing capabilities, resulting in catastrophic failure during events like
explosions. This can cause massive human causalities and property loss. However, this can be avoided
by improving the blast resistance of buildings, using sacrificial cladding structures with cores made of
highly shock-absorbing material.

Traditionally, structural components used in crashworthy applications and armors were commonly
manufactured using metals, because metals are able to absorb the impact energy in a controlled way
because of their high toughness [1]. Then, researchers started using cellular forms such as honeycomb
structures, foams and sandwich structures, which have demonstrated excellent resistance to dynamic
loading due to their bulking and collapse mechanisms [2–6]. Furthermore, composite structures
have shown excellent resistance against vibrations during impact thanks to their unique internal
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structure, which displays good internal damping behaviors [7,8]. These composites have been further
enhanced by the introduction of nanotechnology and nanofillers. The introduction of nanoparticles
into polymer matrices improved their thermal and electrical properties as well as enhancing their
mechanical characteristics, such as strength and toughness. In addition, recent research showed
that reinforcing the polymeric materials with nano-fillers such as CNTs resulted in enhancement of
structural damping of the composites because of the large surface-to volume ratio of nanofillers which
can result in exceptional performance of interfacial bond between the nanofillers and matrix resulting
in an increase of the energy dissipation capability of the material [9–13]. Furthermore, members of
the fullerenes family exhibit extraordinary energy absorption behavior because of their high strength,
stiffness, and large surface area [14–20]. This is why nanocomposites with distinct matrices and filler
materials show improvement not only in stiffness and fracture toughness during experimental studies,
but also in impact energy absorption and vibration damping. For this reason, these nanocomposites
have significant importance in civil and military applications like automobile, airplane structures and
biomedical [11].

Among these nano-sized inclusions, carbon nanotubes (CNTs), being members of the carbon
nanomaterials family, have shown unique energy absorption performance when used in 3D
sponge-array and foams architectures because of their unique mechanical properties [20–23].
Additionally, CNTs have an ultra-high stiffness, strength and an extremely large surface area. They are
also extremely lightweight in comparison to traditional materials. In fact, both experimental and
computational results have shown that they had about tensile strength of 200 GPa, Young’s modulus of
1 TPa, shear modulus of 1 GPa, bulk modulus about 462–546 GPa and bending strength approximately
14.2 GPa [15,16,24]. Recent studies also proved that nanocomposite laminates based on nanocharge
materials have good overall energy absorption characteristics. Numerous previous experimental
works have shown that nano-fillers are able to enhance not only stiffness but also the energy absorption
behavior of polymers and/or conventional composites [25].

Drdlova and Prachař [26] studied the mechanical performance of lightweight porous foams
reinforced with carbon nanotubes with 1–5 vol.% for structural applications under high strain rate
loading using SHPB and results had shown that energy absorption capability of the material was
greatly enhanced up to 4 vol.%, and then there was a significant decrease.

Chen et al. [27] developed a numerical model using dynamic simulation to study the energy
absorption ability of CNT bucky paper under high-velocity impacts. Their study revealed that this
bucky paper showed extremely high kinetic energy dissipation efficiency within its elastic limit, and
that this depended directly on the impact velocity. In addition, Chen et al. [28] also studied the energy
dissipation behavior of CNTs with nested bucky balls during impact using a dynamic simulation
model. The simulated results showed that dissipated energy was mostly converted into the thermal
energy at low velocity impact while bucky balls showed permanent strain deformation at high velocity
impact; thus, dissipation energy was dominated by the strain energy of the energy absorption system.

Weidt et al. [29] performed a study using 2D and 3D computational modelling on aligned
CNT/epoxy nanocomposites under compressive strain rates. The results revealed that, by increasing
the wt.% of CNTs, the nanocomposites showed a noticeable increase in their mechanical performances
including energy absorption behavior.

Although considerable research has been devoted to the energy absorption behavior of CNT-based
nanocomposites, rather less attention has been paid to the dynamic/impact properties. As far as
the compressive response of the composite is concerned, the Split Hopkinson Pressure Bar (SHPB)
technique is one of the examples and has been extensively used to evaluate the impact behavior
of different materials at high strain rates [30–40]. For instance, Gardea et al. [41] showed in their
investigation that strain energy dissipation of CNT reinforced polymers under low strain was not
dependent on the alignment of CNTs; however, damping factor increased monotonically with the
wt.%. of CNTs, which showed the occurrence of friction dissipation mechanisms within the CNT–CNT
interface; however, interfacial slip contributed to energy dissipation at higher strain rates. Moreover,
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they showed that the tearing and plasticity of the matrix caused by the misaligned CNTs within the
loading direction played a vital role in energy dissipation. Gardea et al. [42] in another study showed
that carbon nanotube (CNT)-reinforced acrylonitrile-butadiene-styrene (ABS) composites fabricated by
additive manufacturing exhibited of strain energy dissipation ability with reduced damage because of
the CNTs. Their results showed that CNTs altered the energy dissipation mechanism and controlled
the structural damping behavior under dynamic loading. El Moumen et al. [43] evaluated the effect
of integrating the CNTs in epoxy on its shock wave absorption under dynamic compressive loading
using SHPB. The results showed that as the wt.% of CNTs increased, the nanocomposites were able to
absorb more mechanical shock waves. Thus, this highlights the importance of CNTs in enhancing the
impact resistance behavior of the composite structures. It was also found in a study that the aspect
ratio and mass fraction of CNTs played a vital role in defining the energy absorption characteristics of
a nanocomposite under high strain rate impacts [29].

However, the potential of CNTs, as nanofiller in reinforced epoxy composites like glass
fiber-reinforced polymers (GFRP) or carbon fiber-reinforced polymers (CFRP) under dynamic testing,
is still underdeveloped. There is very little, if any, information available in the literature. Therefore, in
this context, the object of this paper is to study the effect of using various weight percentages of CNTs
in CFRP composites on their shock wave or energy absorption performances. An experimental study
was performed to investigate the energy absorption behavior of CNTs-based CFRP nanocomposites
under out-of-plane dynamic loading, using the SHPB device. Samples were fabricated with 1 and
2% mass fractions and specimen with 0% was considered as a reference. Moreover, these dynamic
compression tests were executed at three different impact pressures, i.e., 2, 3 and 4 bar, to further
analyze the energy absorption ability of these nanocomposites.

2. Materials and Manufacturing Process

The polymer used in this study was a low-viscosity liquid epoxy resin, Epon 862 (Diglycidyl
Ether of Bisphenol F), acquired from Momentive Specialty Chemicals Inc. (Cleveland, OH, USA).
The carbon fiber was provided by Hexcel Company and multi-walled carbon nanotubes (MWNTCs)
were produced by Nanocyl Belgium Company (Sambreville, Belgium), they were synthesized with no
surface functionalization; they had an average diameter of 10 nm and length of 1.5 µm. Mechanical
properties of each constituent are listed in Table 1.

Table 1. Material properties.

Carbon fiber Epoxy matrix CNT

E11 (GPa) 230 E (GPa) 2.72 E (GPa) 500
E22 (GPa) 15 v 0.3 v 0.261
E33 (GPa) 15

v12 0.28
v13 0.28
v23 0.28

G12 (GPa) 15
G13 (GPa) 15
G23 (GPa) 15

Figure 1 shows the SEM and TEM (University of Dayton, United States) characterization of CNTs
in epoxy resin at micro and nano scales. The multiwall nanotubes were tube-shaped materials and
considered as long curved cylindrical fibers (snake-like shapes). The CNTs are randomly distributed
into matrix, Figure 1a. Transmission electron microscopy (TEM) of CNTs shows the fiber shape, see
Figure 1b.
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varying the weight fraction of MWNTCs between 0 and 2%, and then mixing this material using an 
T25 digital ULTRA-TURRAX increased shear laboratory mixer for a total of 30 min at 2000 rpm. 
Afterwards, an ultrasonic bath was also used, and the mixed material was further processed in a 
Lehmann Mills three-roll mixer (University of Dayton, United States) to guarantee a homogeneous 
dispersion of CNTs (Figure 2), the film with 120 μm in thickness containing CNTs was manufactured 
using film line, Figure 3a. The reinforced epoxy was introduced with the 5 HS (satin) T300 6k carbon 
fiber fabric, using the infusion process; Figures 3b and 3c. The reinforced epoxy resin flowed between 
the fiber plies, and the press curing condition was set to 200 MPa. All panels manufactured consisted 
of 24 carbon fiber fabric layers interleaved with 25 layers of CNTs/epoxy film to accomplish an overall 
fiber volume fraction of 50%. The panels were then cooled. SEM characterization was performed to 
demonstrate the CNT distribution with 500 nm resolution. The SEM image confirms the random 
distribution of CNTs with variable length; Figure 3d and 3e. 

Samples with dimensions of 13 mm × 13 mm × 8 mm were then cut from the prepared specimen 
plates for out-of-plane compression test on SHPB, Figure 4. 

 

Figure 2. Lehmann Mills three-roll mixer. 

Figure 1. The morphology of multiwall CNTs by (a) SEM and (b) TEM images.

The fabrication of the nanocomposites consisted of, first, dispersing CNTs in the polymer matrix,
varying the weight fraction of MWNTCs between 0 and 2%, and then mixing this material using
an T25 digital ULTRA-TURRAX increased shear laboratory mixer for a total of 30 min at 2000 rpm.
Afterwards, an ultrasonic bath was also used, and the mixed material was further processed in a
Lehmann Mills three-roll mixer (University of Dayton, United States) to guarantee a homogeneous
dispersion of CNTs (Figure 2), the film with 120 µm in thickness containing CNTs was manufactured
using film line, Figure 3a. The reinforced epoxy was introduced with the 5 HS (satin) T300 6k carbon
fiber fabric, using the infusion process; Figure 3b,c. The reinforced epoxy resin flowed between the
fiber plies, and the press curing condition was set to 200 MPa. All panels manufactured consisted of
24 carbon fiber fabric layers interleaved with 25 layers of CNTs/epoxy film to accomplish an overall
fiber volume fraction of 50%. The panels were then cooled. SEM characterization was performed
to demonstrate the CNT distribution with 500 nm resolution. The SEM image confirms the random
distribution of CNTs with variable length; Figure 3d,e.
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Samples with dimensions of 13 mm × 13 mm × 8 mm were then cut from the prepared specimen
plates for out-of-plane compression test on SHPB, Figure 4.
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3. Test Procedure

3.1. SHPB Test Method

Figure 5 is a schematic of The Split Hopkinson Pressure Bar (SHPB) apparatus that was used in
this study to assess the shock wave absorption characteristics of the specimens. The experimental
setup was composed of striker, incident (input) and transmitted (output) steel bars. A compressive
longitudinal wave was induced in the incident pressure bar by impacting it with the striker bar at a
specified velocity (Impact energy). A compressive incident wave εI(t) was generated when a striker bar
impacted the free end of the input bar and travelled across the input bar until it got to the bar-specimen
interface. Once the specimen was hit by the incident wave, the wave was split into two parts. One
part was transferred to the output bar as a compressive transmitted wave εT(t) and the other part
was reflected to the input bar as a tensile reflected wave εR(t). These three pulses εI(t), εR(t) and
εT(t) were measured using strain gauges mounted at the middle of each pressure bar, and a digital
oscilloscope was used for data acquisition; Figure 6. Recorded data were then treated using by means
of the Maple Software algorithm to acquire all dynamic parameters like, for example, forces and
velocities, as functions of time at the two faces of the specimen, which had already been sandwiched
between the two pressure bars.
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3.2. Dynamic Compression Testing

During the experimental investigation, the velocity of the striker bar (impact pressure) was
controlled to obtain a wide range of impact energy magnitudes. Variation of the incident velocity as a
function of time was plotted to assess the dynamic response of each specimen at impact pressure P
= 4 bar, and the results confirmed the test reproducibility, which was common for all CNTs weight
percentages; Figure 7. We performed tests at different pressures ranging from 2 to 4 bar but 4 bar was
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the pressure at which damage was exhibited in the samples. We wanted to see the effect of CNTs on
the improvement of the damage mechanism of fiber-reinforced composites, so 4 bar was chosen to
present the diversity of the behavior of our material with respect to the addition of CNTs.
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3.3. Theorical Characterization of Absorbed Energy

During the dynamic compressive tests, the input energy (impact energy) corresponding to the
transferred kinetic energy of the striker bar to incident bar was obtained by varying its initial velocity.
Once the input energy reached the bar specimen interface, it was split into two parts. One part was
absorbed by the sample and could have caused plastic deformation or damage in different forms,
which in turn could have led to heat generation if macroscopic damage occurred. The other part
was transferred to the output bar as the transmitted energy [44]. Absorbed energy was the difference
between the work transferred to the specimen from the incident bar and the mechanical work done
by the specimen and transmitted to output bar [45]. The mechanical powers at the interfaces of two
pressure bars were obtained by multiplying the corresponding velocity by the contact force.

Velocity (V) was determined using the incident and transmitted strains (εI and εT) as stated by
Park et al. [45]:

V(x, t) = c [−εi

(
t−

x
c

)
+ εr

(
t +

x
c

)
] (1)

where c = (E/ρ)
1
2 is the longitudinal wave velocity of the bar, E is the Young’s modulus, and ρ is the

mass density of the pressure bar.



Polymers 2020, 12, 194 8 of 16

The normal force (F) on any cross-section x of the incident and transmitted bars is:

F(x, t) = AEε(x, t) (2)

where A represents the cross-sectional area of the bar.
It was obvious that the physical properties could be obtained only if the values of εi and εr

were known. Hence, the main purpose of this experimentation was to find out these functions using
strain gauges, mounted at the middle of each pressure bar. A digital oscilloscope was also used for
data acquisition.

The overall mechanical work was calculated by integrating the mechanical power with respect to
time. Thus, both the work transferred from the input bar to the CNTs-based nanocomposites sample
(Winc) and the work done by the sample and transferred to the output bar (Wtrans) are given by [45]:

Winc = −

∫ t f

ti

Finc(t)Vinc(t)dt (3)

Wtrans=

∫ t f

ti

Ftrans(t)Vtrans(t)dt (4)

where the incident and transmitted physical parameters are presented by the subscript “inc” and
“trans”.

The absorbed energy of the sample (Eabs) was calculated using the equation below, given in [45]:

Eabs = Winc(t) −Wtrans(t) (5)

Figure 8 shows an example of a typical absorbed energy curve for the test conducted on 0% CNTs
sample. Results showed an increase in the absorbed energy during the impact and this energy absorbed
by the material was the combination of two different energies. The first part was the elastic part, which
was released until it reached a constant value (gradual unloading cycle). The second part was the
inelastic unrecoverable energy, represented by the constant value, that was dissipated permanently
through damage (the end of the cycle). Thus, the absorbed energy can be given as:

Eabs = Eelas + Ediss (6)
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4. Results and Discussion

A wide variety of input energies (or incident energy) was used to impact the carbon/epoxy
nanocomposite specimens in order to understand the effect of CNTs on their energy absorption
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capability. Therefore, the energy absorption behavior of each specimen was studied at impact
energy of 15 J, 34 J and 53 J. The absorbed energy results showed that all the samples had similar
characteristics, Figure 9. This response indicated that no macroscopic damage was occurred as shown
by Tarfaoui et al. [46]. Moreover, the fluctuation in the curves was caused by the storage and release of
strain energy during the out-of-plane compression tests. Another interesting phenomenon observed is
that the absorbed energy was very much influenced by increasing the impact energy, and the maximum
peak also increased as the input energy was increasing. This behavior was common for all mass
fractions of CNTs.

Polymers 2019, 11, x FOR PEER REVIEW 9 of 16 

 

the maximum peak also increased as the input energy was increasing. This behavior was common 
for all mass fractions of CNTs. 

 

(a) 𝑊௜௠௣ = 15.98 J 

 

(b) 𝑊௜௠௣ = 34.31 J 

 

(c) 𝑊௜௠௣ = 53.02 J 

Figure 9. Absorbed energy vs. time for different CNTs mass fractions. 

It can be seen that there was a noticeable effect due to the introduction of CNTs. An important 
portion of the impact energy 𝑊௜௠௣ was absorbed during the impact. Actually, this absorbed energy 
was the energy stored in the specimen during the elastic deformation and it was released in the form 
of recoverable elastic strain energy and dissipated energy. Moreover, the experimental behavior of 
the CNT-based nanocomposites also confirmed that an increase in absorbed energy was observed 
because of the increase in both elastic and dissipated energies. However, the greatest portion of the 
absorbed energy was stored and released as elastic strain energy (𝐸௘௟௔௦) and only a small portion was 
dissipated energy ( 𝐸ௗ௜௦௦). This response indicated that neat epoxy showed more plastic deformation 
instead of elastic behavior, compared to samples with a different mass fraction of CNTs. Addition of 
CNTs improved the elastic behavior of composites and reduced their plastic deformation as it became 
more resilient. In fiber reinforced composites the matrix is responsible for the plasticity because of 
their ductile nature. However, when CNTs were added as nanofillers in the matrix epoxy the material 
became more rigid with an increase in its elastic properties and reduction in its plasticity. In addition, 
CNT-reinforced nanocomposites had higher energy dissipation performance because of the increase 
in micro cracks. The CNTs behave as barrier for any crack propagation. Thus, they stop the 
propagation of any crack initiation, which can result in significant micro cracks instead of fatal macro 
damage and could delay the final fracture. This showed that, even with small weight percentage such 
as 1%, CNTs could improve the energy absorption of the CFRP laminate composites and delay the 
final fracture. Figure 10 gives a summary of the obtained results. 
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It can be seen that there was a noticeable effect due to the introduction of CNTs. An important
portion of the impact energy Wimp was absorbed during the impact. Actually, this absorbed energy
was the energy stored in the specimen during the elastic deformation and it was released in the form
of recoverable elastic strain energy and dissipated energy. Moreover, the experimental behavior of
the CNT-based nanocomposites also confirmed that an increase in absorbed energy was observed
because of the increase in both elastic and dissipated energies. However, the greatest portion of the
absorbed energy was stored and released as elastic strain energy (Eelas) and only a small portion was
dissipated energy (Ediss). This response indicated that neat epoxy showed more plastic deformation
instead of elastic behavior, compared to samples with a different mass fraction of CNTs. Addition of
CNTs improved the elastic behavior of composites and reduced their plastic deformation as it became
more resilient. In fiber reinforced composites the matrix is responsible for the plasticity because of
their ductile nature. However, when CNTs were added as nanofillers in the matrix epoxy the material
became more rigid with an increase in its elastic properties and reduction in its plasticity. In addition,
CNT-reinforced nanocomposites had higher energy dissipation performance because of the increase in
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micro cracks. The CNTs behave as barrier for any crack propagation. Thus, they stop the propagation
of any crack initiation, which can result in significant micro cracks instead of fatal macro damage and
could delay the final fracture. This showed that, even with small weight percentage such as 1%, CNTs
could improve the energy absorption of the CFRP laminate composites and delay the final fracture.
Figure 10 gives a summary of the obtained results.Polymers 2019, 11, x FOR PEER REVIEW 10 of 16 
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The energy dissipation caused in a nanocomposite during out-of-plane compressive loading was
calculated by taking the area under the curve of the absorbed energy profiles for each specimen. Results
revealed that there was an increase in dissipated energy as the wt.% of CNTs increased. The plausible
scenario for the augmentation of the energy dissipation was the sliding phenomenon at the interface
between CNTs and polymer matrix. Low mass density of CNTs and exceptionally large contact area at
the interface between CNTs and matrix caused the frictional sliding at the CNT-CNT and CNT-matrix
interfaces which could be the main cause of the increase in energy dissipation with minimal weight
penalty [47]. Moreover, this sliding between the matrix and the CNTs could enhance the structural
damping of the material. Recent studies of polymer material reinforced with nanofillers have also
demonstrated that integrating nanofillers in the polymer matrix increased the damping of composite
structures more efficiently [48].

Another method for augmenting the frictional energy dissipation is by boosting the weight
fraction of CNTs in the composite; Figure 11.
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5. Failure Mode

The experimental investigation was studied in detail to improve the understanding of the dynamic
behavior of these nanocomposites during out-of-plane compression tests. The results showed that the
dynamic properties of CNTs reinforced nanocomposite were significantly affected by increasing CNTs
mass fraction. Strain rate and stress as functions of time were superposed for each mass fraction of
CNTs at impact pressure of 4 bar, Figure 12. According to this figure, we are able to differentiate a
variety of zones for each specimen and each zone is described individually as follow:
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Zone 1: strain rate increases quickly before attaining the highest peak. This maximum value was
reduced through the increase of CNTs mass fraction and this can be explained by the increase in the
rigidity of the matrix material because of the presence of CNTs.

Zone 2: once perfect contact was guaranteed, there was a drop in strain rate and an increase
in strength.

Zone 3: an increase in strength became stable and reached the saturation level while the strain
rate gradually decreased to zero value. The sample reached maximum compression stress in this zone.

Zone 4: in this zone, the specimen rebounded and started to relax. The strain rate started to
decrease below zero value and there was a drop in the stress of the specimen. This situation could
be justified by the spring-back behavior of the specimen. At the end of this zone, both signals were
negated at approximately the same time.

The damage tolerance is a significant criterion for the composites to be used in the civil and
military applications like naval or aerospace. This characteristic goes through the damage behavior of
structure from the initial state to final fracture; and numerous methods have been utilized to verify the
magnitude of the damage. A high-speed camera was used to monitor and record the behavior of the
specimen during the dynamic compression tests performed at 4 bar. The images, which were taken in
real-time, show the progression of damage, Figure 13. However, it should be kept in mind that no
macroscopic damage in the nanocomposite specimens was noticed at the 4 bar; and the absence of
the second peak in the strain rate vs. time curve validated this phenomenon. However, damage at
microscopic and nano scale, such as plastic deformation, micro-buckling, kink-bands, and crack could
have happened. A damaged zone was observed at 0.12 ms of impact time in the case of 0% CNTs
sample, but no damage was obtained in the case of reinforced specimens with CNTs. The incorporation
of CNTs not only increase the strength of the material but also played a vital role in delaying the crack
propagation phenomena, thus increasing the resistance of material to final fracture.
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Figure 13. High-speed photograph of real-time dynamic compression test of nanocomposites with
different CNTs mass fraction, P = 4 bar.

6. Conclusion

An experimental investigation was carried out to study the effect of different wt.% of CNTs on the
mechanical energy balance of CFRP nanocomposites using split Hopkinson pressure bars. Samples
with different CNT weight percentages (0% as reference, 1% and 2%) were subjected to different
incident waves; and results showed that the ability of the material to absorb a mechanical shock wave
was improved by increasing the CNTs mass fractions. This increase was due to the enhancement of
elastic strain behavior of the composite and decrease in its plasticity with the addition of CNTs in the
matrix of the composite. Moreover, damage modes were evaluated, and the results indicated that no
macroscopic damage was observed in the specimen under the impact pressures, because CNTs act as
a barrier to crack propagation; however, micro cracks and permanent plastic deformation could be
present within the nano composites. Thus, the presence of CNTs resulted in greater energy dissipation
and increase in energy absorption behavior of these nanocomposites. Results confirmed that for
out-of-plane tests, CNT-based nanocomposites exhibited better stiffness and resistance to damage
compared to neat material; and dynamic response revealed that the composite final failure was delayed
by increasing the CNT % in addition to improvement in energy absorption and dissipation system.
Therefore, CNTs might be good nanofillers, which improves the dynamic properties of the composites
and enhance the resistance to damage and the energy absorption capability of composite materials for
high velocity impact loadings.
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