Molecular Mechanism of Resistance to Stress in Cotton

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Physiology and Metabolism".

Deadline for manuscript submissions: closed (1 June 2022) | Viewed by 13676

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory for Crop Genetics & Germplasm Enhancement and Utilization, Cotton Germplasm Innovation and Application Engineering Center (the Ministry of Education), College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
Interests: drought and salt stress; molecular mechanism of abiotic stress; m6a modification
Special Issues, Collections and Topics in MDPI journals
College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China
Interests: drought and salt stress; molecular mechanism of abiotic stress; plant non-coding RNA
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the field, crops are often subjected to multiple biotic and abiotic stresses, which seriously affect their production and quality. Under these unfavorable environments, crops exhibit unique physiological and molecular responses to environmental stresses. However, the underlying molecular mechanisms involved are still fragmentary for plant scientists. Cotton (Gossypium spp.) is the most important natural fiber crop for the world’s textile industry and is also a significant oilseed crop. Cotton production is limited by various abiotic and biotic stresses all over the world. There is an urgent need to ascertain the physiological, molecular and genetic basis underlying the cotton response to multiple stresses and to develop cotton cultivars with improved drought tolerance. This issue highlights recent advances in the field of molecular mechanism of resistance to stress (biotic and abiotic) in cotton. The topics are diverse: the identification of key components (gene, small molecular, protein, secondary metabolites etc.) from cotton to response stresses (salt, drought, heat etc.) and their functional mechanisms, specific methods developed, cotton-pathogens interactions, and environmental factors acting on these interactions.

Dr. Dayong Zhang
Dr. Zhiyong Ni
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cotton
  • biotic and abiotic
  • components
  • functional analysis
  • interactions
  • molecular mechanism

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 5306 KiB  
Article
Gb_ANR-47 Enhances the Resistance of Gossypium barbadense to Fusarium oxysporum f. sp. vasinfectum (FOV) by Regulating the Content of Proanthocyanidins
by Xuening Su, Jieyin Zhao, Wenju Gao, Qianli Zu, Quanjia Chen, Chunping Li and Yanying Qu
Plants 2022, 11(15), 1902; https://doi.org/10.3390/plants11151902 - 22 Jul 2022
Cited by 4 | Viewed by 1496
Abstract
Anthocyanidin reductase (ANR) is an important regulator of flavonoid metabolism, and proanthocyanidins, the secondary metabolites of flavonoids, play an important role in the response of plants to pathogenic stress. Therefore, in this study, the expression analysis of the ANR gene family of Gossypium [...] Read more.
Anthocyanidin reductase (ANR) is an important regulator of flavonoid metabolism, and proanthocyanidins, the secondary metabolites of flavonoids, play an important role in the response of plants to pathogenic stress. Therefore, in this study, the expression analysis of the ANR gene family of Gossypium barbadense after inoculation with Fusarium oxysporum f. sp. vasinfectum (FOV) was performed at different time points. It was found that Gb_ANR-47 showed significant differences in the disease-resistant cultivar 06-146 and the susceptible cultivar Xinhai 14, as well as in the highest root expression. It was found that the expression of Gb_ANR-47 in the resistant cultivar was significantly higher than that in the susceptible cultivar by MeJA and SA, and different amounts of methyl jasmonate (MeJA) and salicylic acid (SA) response elements were found in the promoter region of Gb_ANR-47. After silencing GbANR-47 in 06-146 material by VIGS technology, its resistance to FOV decreased significantly. The disease severity index (DSI) was significantly increased, and the anthocyanin content was significantly decreased in silenced plants, compared to controls. Our findings suggest that GbANR-47 is a positive regulator of FOV resistance in Gossypium barbadense. The research results provide an important theoretical basis for in-depth analysis of the molecular mechanism of GbANR-47 and improving the anti-FOV of Gossypium barbadense. Full article
(This article belongs to the Special Issue Molecular Mechanism of Resistance to Stress in Cotton)
Show Figures

Figure 1

18 pages, 6991 KiB  
Article
A Small Gtp-Binding Protein GhROP3 Interacts with GhGGB Protein and Negatively Regulates Drought Tolerance in Cotton (Gossypium hirsutum L.)
by Ziyao Hu, Jianfeng Lei, Peihong Dai, Chao Liu, Abuduweili Wugalihan, Xiaodong Liu and Yue Li
Plants 2022, 11(12), 1580; https://doi.org/10.3390/plants11121580 - 15 Jun 2022
Cited by 2 | Viewed by 1737
Abstract
As a plant-specific Rho-like small G protein, the ROP (Rho-related GTPase of plants) protein regulates the growth and development of plants and various stress responses in the form of molecular switches. Drought is a major abiotic stress that limits cotton yield and fiber [...] Read more.
As a plant-specific Rho-like small G protein, the ROP (Rho-related GTPase of plants) protein regulates the growth and development of plants and various stress responses in the form of molecular switches. Drought is a major abiotic stress that limits cotton yield and fiber quality. In this study, virus-induced gene silencing (VIGS) technology was used to analyze the biological function of GhROP3 in cotton drought stress tolerance. Meanwhile, we used yeast two-hybrid and bimolecular fluorescence complementation assays to examine the interaction between GhROP3 and GhGGB. GhROP3 has a high expression level in cotton true leaves and roots, and responds to drought, high salt, cold, heat stress, and exogenous abscisic acid (ABA) and auxin (IAA) treatments. Silencing GhROP3 improved the drought tolerance of cotton. The water loss rates (WLR) of detached leaves significantly reduced in silenced plants. Also, the relative water content (RWC) and total contents of chlorophyll (Chl) and proline (Pro) of leaves after drought stress and the activities of three antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) significantly increased, whereas the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) significantly reduced. In the leaves of silenced plants, the expression of genes related to ABA synthesis and its related pathway was significantly upregulated, and the expression of decomposition-related GhCYP707A gene and genes related to IAA synthesis and its related pathways was significantly downregulated. It indicated that GhROP3 was a negative regulator of cotton response to drought by participating in the negative regulation of the ABA signaling pathway and the positive regulation of the IAA signaling pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that the GhROP3 protein interacted with the GhGGB protein in vivo and in vitro. This study provided a theoretical basis for the in-depth investigation of the drought resistance–related molecular mechanism of the GhROP3 gene and the biological function of the GhGGB gene. Full article
(This article belongs to the Special Issue Molecular Mechanism of Resistance to Stress in Cotton)
Show Figures

Figure 1

15 pages, 4862 KiB  
Article
Potential Roles of 1-Aminocyclopropane-1-carboxylic Acid Synthase Genes in the Response of Gossypium Species to Abiotic Stress by Genome-Wide Identification and Expression Analysis
by Jie Li, Xianyan Zou, Guoquan Chen, Yongming Meng, Qi Ma, Quanjia Chen, Zhi Wang and Fuguang Li
Plants 2022, 11(11), 1524; https://doi.org/10.3390/plants11111524 - 6 Jun 2022
Cited by 5 | Viewed by 2061
Abstract
Ethylene plays a pivotal role in plant stress resistance and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is the rate-limiting enzyme in ethylene biosynthesis. Upland cotton (Gossypium hirsutum L.) is the most important natural fiber crop, but the function of ACS in response to abiotic [...] Read more.
Ethylene plays a pivotal role in plant stress resistance and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is the rate-limiting enzyme in ethylene biosynthesis. Upland cotton (Gossypium hirsutum L.) is the most important natural fiber crop, but the function of ACS in response to abiotic stress has rarely been reported in this plant. We identified 18 GaACS, 18 GrACS, and 35 GhACS genes in Gossypiumarboreum, Gossypium raimondii and Gossypiumhirsutum, respectively, that were classified as types I, II, III, or IV. Collinearity analysis showed that the GhACS genes were expanded from diploid cotton by the whole-genome-duplication. Multiple alignments showed that the C-terminals of the GhACS proteins were conserved, whereas the N-terminals of GhACS10 and GhACS12 were different from the N-terminals of AtACS10 and AtACS12, probably diverging during evolution. Most type II ACS genes were hardly expressed, whereas GhACS10/GhACS12 were expressed in many tissues and in response to abiotic stress; for example, they were highly and hardly expressed at the early stages of cold and heat exposure, respectively. The GhACS genes showed different expression profiles in response to cold, heat, drought, and salt stress by quantitative PCR analysis, which indicate the potential roles of them when encountering the various adverse conditions, and provide insights into GhACS functions in cotton’s adaptation to abiotic stress. Full article
(This article belongs to the Special Issue Molecular Mechanism of Resistance to Stress in Cotton)
Show Figures

Figure 1

18 pages, 5233 KiB  
Article
Genome-Wide Identification of Cotton (Gossypium spp.) Trehalose-6-Phosphate Phosphatase (TPP) Gene Family Members and the Role of GhTPP22 in the Response to Drought Stress
by Weipeng Wang, Hua Cui, Xiangfen Xiao, Bingjie Wu, Jialiang Sun, Yaxin Zhang, Qiuyue Yang, Yuping Zhao, Guoxiang Liu and Tengfei Qin
Plants 2022, 11(8), 1079; https://doi.org/10.3390/plants11081079 - 15 Apr 2022
Cited by 11 | Viewed by 2333
Abstract
Trehalose-6-phosphate phosphatase (TPP) is a key enzyme involved in trehalose synthesis in higher plants. Previous studies have shown that TPP family genes increase yields without affecting plant growth under drought conditions, but their functions in cotton have not been reported. In this study, [...] Read more.
Trehalose-6-phosphate phosphatase (TPP) is a key enzyme involved in trehalose synthesis in higher plants. Previous studies have shown that TPP family genes increase yields without affecting plant growth under drought conditions, but their functions in cotton have not been reported. In this study, 17, 12, 26 and 24 TPP family genes were identified in Gossypium arboreum, Gossypium raimondii, Gossypium barbadense and Gossypium hirsutum, respectively. The 79 TPP family genes were divided into three subgroups by phylogenetic analysis. Virus-induced gene silencing (VIGS) of GhTPP22 produced TRV::GhTPP22 plants that were more sensitive to drought stress than the control plants, and the relative expression of GhTPP22 was decreased, as shown by qRT–PCR. Moreover, we analysed the gene structure, targeted small RNAs, and gene expression patterns of TPP family members and the physicochemical properties of their encoded proteins. Overall, members of the TPP gene family in cotton were systematically identified, and the function of GhTPP22 under drought stress conditions was preliminarily verified. These findings provide new information for improving drought resistance for cotton breeding in the future. Full article
(This article belongs to the Special Issue Molecular Mechanism of Resistance to Stress in Cotton)
Show Figures

Figure 1

23 pages, 16511 KiB  
Article
Genome-Wide Association Analysis of Salt-Tolerant Traits in Terrestrial Cotton at Seedling Stage
by Juyun Zheng, Zeliang Zhang, Zhaolong Gong, Yajun Liang, Zhiwei Sang, Yanchao Xu, Xueyuan Li and Junduo Wang
Plants 2022, 11(1), 97; https://doi.org/10.3390/plants11010097 - 29 Dec 2021
Cited by 13 | Viewed by 2374
Abstract
Soil salinization is the main abiotic stress factor affecting agricultural production worldwide, and salt stress has a significant impact on plant growth and development. Cotton is one of the most salt-tolerant crops. Therefore, the selection and utilization of salt-tolerant germplasm resources and the [...] Read more.
Soil salinization is the main abiotic stress factor affecting agricultural production worldwide, and salt stress has a significant impact on plant growth and development. Cotton is one of the most salt-tolerant crops. Therefore, the selection and utilization of salt-tolerant germplasm resources and the excavation of salt resistance genes play important roles in improving cotton production in saline–alkali soils. In this study, we analysed the population structure and genetic diversity of a total 149 cotton plant materials including 137 elite Gossypium hirsutum cultivar accessions collected from China and 12 elite Gossypium hirsutum cultivar accessions collected from around the world. Illumina Cotton SNP 70 K was used to obtain genome-wide single-nucleotide polymorphism (SNP) data for 149 elite Gossypium hirsutum cultivar accessions, and 18,430 highly consistent SNP loci were obtained by filtering. It was assessed by using PCA principal component analysis so that the 149 elite Gossypium hirsutum cultivar accessions could be divided into two subgroups, including subgroup 1 with 78 materials and subgroup 2 with 71 materials. Using the obtained SNP and other marker genotype test results, under salt stress, the salt tolerance traits 3d Germination potential, 3d Radicle length drop rate, 7d Germination rate, 7d Radicle length drop rate, 7d Germination weight, 3d Radicle length, 7d Radicle length, Relative Germination potential, Relative Germination rate, 7d Radicle weight drop rate, Salt tolerance index 3d Germination potential index, 3d Radicle length index, 7d Radicle length index, 7d Radicle weight index and 7d Germination rate index were evaluated by GWAS (genome-wide association analysis). A total of 27 SNP markers closely related to the salt tolerance traits and 15 SNP markers closely related to the salt tolerance index were detected. At the SNP locus associated with phenotyping, Gh_D01G0943, Gh_D01G0945, Gh_A01G0906, Gh_A01G0908, Gh_D08G1308 and Gh_D08G1309 related to plant salt tolerance were detected, and they were found to be involved in intracellular transport, sucrose synthesis, osmotic pressure balance, transmembrane transport, N-glycosylation, auxin response and cell amplification. This study provides a theoretical basis for the selection and breeding of salt-tolerant upland cotton varieties. Full article
(This article belongs to the Special Issue Molecular Mechanism of Resistance to Stress in Cotton)
Show Figures

Figure 1

17 pages, 2855 KiB  
Article
Nanopore-Based Comparative Transcriptome Analysis Reveals the Potential Mechanism of High-Temperature Tolerance in Cotton (Gossypium hirsutum L.)
by Yajun Liang, Zhaolong Gong, Junduo Wang, Juyun Zheng, Yizan Ma, Ling Min, Qin Chen, Zhiqiang Li, Yanying Qu, Quanjia Chen and Xueyuan Li
Plants 2021, 10(11), 2517; https://doi.org/10.3390/plants10112517 - 19 Nov 2021
Cited by 3 | Viewed by 2492
Abstract
Extreme high temperatures are threatening cotton production around the world due to the intensification of global warming. To cope with high-temperature stress, heat-tolerant cotton cultivars have been bred, but the heat-tolerant mechanism remains unclear. This study selected heat-tolerant (‘Xinluzao36′) and heat-sensitive (‘Che61-72′) cultivars [...] Read more.
Extreme high temperatures are threatening cotton production around the world due to the intensification of global warming. To cope with high-temperature stress, heat-tolerant cotton cultivars have been bred, but the heat-tolerant mechanism remains unclear. This study selected heat-tolerant (‘Xinluzao36′) and heat-sensitive (‘Che61-72′) cultivars of cotton treated with high-temperature stress as plant materials and performed comparative nanopore sequencing transcriptome analysis to reveal the potential heat-tolerant mechanism of cotton. Results showed that 120,605 nonredundant sequences were generated from the raw reads, and 78,601 genes were annotated. Differentially expressed gene (DEG) analysis showed that a total of 19,600 DEGs were screened; the DEGs involved in the ribosome, heat shock proteins, auxin and ethylene signaling transduction, and photosynthesis pathways may be attributed to the heat tolerance of the heat-tolerant cotton cultivar. This study also predicted a total of 5118 long non-coding RNAs (lncRNAs)and 24,462 corresponding target genes. Analysis of the target genes revealed that the expression of some ribosomal, heat shock, auxin and ethylene signaling transduction-related and photosynthetic proteins may be regulated by lncRNAs and further participate in the heat tolerance of cotton. This study deepens our understandings of the heat tolerance of cotton. Full article
(This article belongs to the Special Issue Molecular Mechanism of Resistance to Stress in Cotton)
Show Figures

Figure 1

Back to TopTop