Bioactive Metabolites from Plants as Potential Treatments for Global Diseases

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Phytochemistry".

Deadline for manuscript submissions: closed (30 March 2025) | Viewed by 3915

Special Issue Editors


E-Mail Website
Guest Editor
1. Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
2. Institute of Chemistry and Metabolism of Drugs (IQUIMEFA), University of Buenos Aires–National Scientific and Technical Research Council, Buenos Aires, Argentina
Interests: neglected diseases; antimicrobial activity; antitumor activity; natural compounds; plant extracts; terpenoids; flavonoids; Asteraceae

E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Instituto de Medicina Tropical Pedro Kouri, La Habana, Cuba
Interests: natural products; neglected diseases; parasitology

Special Issue Information

Dear Colleagues,

Nature is an important contributor to the discovery of novel compounds used for the treatment of different diseases around the world. Many medicines in use today are of natural origin and most have been isolated and identified in plants. It is estimated that only 15% of higher plants have been phytochemically studied and only about 6% have been pharmacologically evaluated.

Plants continue to be an important source of new active compounds with a broad range of pharmacological activities. Secondary metabolites such as flavonoids, xanthones, alkaloids, terpenoids, and quinones, among others, stand out. These types of compounds can be used as chemical entities or as templates for the design of novel drugs in the prevention and/or treatment of global infectious and chronic diseases.

In this context, this Special Issue will focus on natural bioactive compounds from plant origin that may have an impact on human global diseases prevention or treatment. We will also accept documents dealing with secondary metabolites derived from plant cell culture. Submissions, including original research papers, mini-reviews, and reviews, which deal with the isolation and identification of bioactive compounds from plant sources will be considered.

Prof. Dr. Valeria P. Sülsen
Prof. Dr. Louis Pergaud Sandjo
Prof. Dr. Lianet Monzote
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive natural molecules
  • chronic diseases
  • infectious diseases
  • plants

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

12 pages, 2025 KiB  
Article
Lambertianic Acid from Platycladus orientalis Inhibits Muscle Atrophy in Dexamethasone-Induced C2C12 Muscle Atrophy Cells
by Chan Hee Cho, Si Hyeon Chae, Ngoc Han Le Thi, Sung Hee Um, Seulah Lee, Jae Sik Yu, Ki Sung Kang and Ki Hyun Kim
Plants 2025, 14(9), 1357; https://doi.org/10.3390/plants14091357 - 30 Apr 2025
Viewed by 141
Abstract
Platycladus orientalis, an evergreen tree belonging to the Cupressaceae family, has been traditionally used to treat various ailments, including fever, cough, diarrhea, diuresis, cold symptoms, and gastrointestinal disorders in folk medicine. As part of our ongoing investigation aimed at discovering bioactive natural [...] Read more.
Platycladus orientalis, an evergreen tree belonging to the Cupressaceae family, has been traditionally used to treat various ailments, including fever, cough, diarrhea, diuresis, cold symptoms, and gastrointestinal disorders in folk medicine. As part of our ongoing investigation aimed at discovering bioactive natural products and elucidating their mechanisms of action from various natural sources, we investigated a methanol (MeOH) extract of P. orientalis leaves. This investigation led to the isolation and identification of a labdane-type diterpene, lambertianic acid (LA), via column chromatography and HPLC purification. The structure of LA was elucidated using LC/MS and NMR spectroscopic analyses, including HR-ESIMS, while its absolute configuration was confirmed through electronic circular dichroism (ECD) calculations. Recent studies have reported that labdane-type diterpenes exhibit diverse pharmacological activities, such as anticancer, anti-inflammatory, anti-obesity, and hypolipidemic effects. Notably, LA has been shown to modulate adipocyte metabolism via AMPK signaling; however, its role in skeletal muscle atrophy remains unexplored. Therefore, in this study, we investigated the effects of LA on dexamethasone (Dex)-induced muscle atrophy in C2C12 myotubes. Treatment with LA at concentrations of 25 µM and 50 µM significantly rescued myotube diameter and reduced the expression of atrophy-related proteins, including MuRF-1 and atrogin-1/MAFbx, without compromising cell viability at these moderate concentrations. These findings suggest that LA derived from P. orientalis exerts protective effects against skeletal muscle atrophy, highlighting its potential as a promising natural therapeutic candidate for muscle-wasting disorders. Full article
Show Figures

Graphical abstract

16 pages, 2744 KiB  
Article
Prolonged Diuretic, Natriuretic, and Potassium- and Calcium-Sparing Effect of Hesperidin in Hypertensive Rats
by Sabrina Lucietti Dick Orengo, Rita de Cássia Vilhena da Silva, Anelise Felício Macarini, Valdir Cechinel Filho and Priscila de Souza
Plants 2025, 14(9), 1324; https://doi.org/10.3390/plants14091324 - 27 Apr 2025
Viewed by 305
Abstract
Systemic hypertension is a major global health concern, significantly contributing to the risk of cardiovascular, cerebrovascular, and renal diseases. Antihypertensive medications play a crucial role in lowering blood pressure, with diuretics serving as a particularly effective first-line therapy. However, the development of new [...] Read more.
Systemic hypertension is a major global health concern, significantly contributing to the risk of cardiovascular, cerebrovascular, and renal diseases. Antihypertensive medications play a crucial role in lowering blood pressure, with diuretics serving as a particularly effective first-line therapy. However, the development of new compounds with diuretic properties, renal protective effects, and unique mechanisms of action remains a critical area of research for improving clinical outcomes. In this context, the present study investigated the diuretic and renal protective potential of the citrus flavonoid hesperidin in rats. Male spontaneously hypertensive and normotensive rats were treated with hesperidin at a dose of 3.0 mg/kg daily for seven days. Urine samples were analyzed for electrolytes (Na+, K+, Cl, and Ca2+), biochemical parameters, and crystal precipitation, while renal tissues were examined histologically. Hesperidin treatment resulted in significant diuretic and natriuretic effects, along with potassium- and calcium-sparing properties. Furthermore, a marked reduction in calcium oxalate crystal formation was observed in the hesperidin-treated group. Histological analysis indicated a protective effect on renal tissue, with structural preservation observed in hypertensive rats. Docking studies revealed that hesperetin, the active metabolite of hesperidin formed upon oral administration, exhibited a high binding affinity for the calcium-sensing receptor (CaSR). This hypothesis may explain its role in preventing urinary crystalluria and contributing to calcium-sparing effects. Full article
Show Figures

Figure 1

11 pages, 2691 KiB  
Article
In Vitro and In Vivo Antiurolithic Effect of Betulinic Acid Obtained from Citharexylum mirianthum
by Luísa Nathália Bolda Mariano, Gabriela Vequi, Rita de Cássia Vilhena da Silva, Anelise Felício Macarini, Anelize Dada, Thaina Mariz Costa, Murilo Morales Omena, Christiane Regina Pamplona Pereira, Valdir Cechinel-Filho, Rivaldo Niero and Priscila de Souza
Plants 2024, 13(15), 2141; https://doi.org/10.3390/plants13152141 - 1 Aug 2024
Viewed by 1113
Abstract
The study aimed to investigate the potential antiurolithic effects of extracts, fractions, and betulinic acid (BA) from Citharexylum mirianthum. In vitro analysis involved precipitating calcium oxalate (CaOx) crystals in urine. For in vivo studies, rats were divided into four groups: naive; vehicle; [...] Read more.
The study aimed to investigate the potential antiurolithic effects of extracts, fractions, and betulinic acid (BA) from Citharexylum mirianthum. In vitro analysis involved precipitating calcium oxalate (CaOx) crystals in urine. For in vivo studies, rats were divided into four groups: naive; vehicle; potassium citrate (KC); and BA. Urolithiasis was induced using ethylene glycol and ammonium chloride. After seven days, urine, blood, and kidney tissues were evaluated. The results showed that methanolic extract, hexane, dichloromethane, and ethyl acetate fractions, as well as BA, reduced CaOx crystal formation. In vivo, the vehicle-treated group exhibited reduced urinary volume and Na+ excretion, while the BA-treated group showed restored urinary volume and Na+ excretion similar to the naive group. BA also significantly reduced urinary monohydrate and dihydrate crystal formation, comparable to the KC group. Other urinary parameters remained unchanged, but plasma analysis revealed decreased Na+, K+, and Ca2+ in the KC group. Renal tissue analysis indicated reduced lipid hydroperoxides and increased reduced glutathione in all urolithiasis groups, with unchanged nitrite levels. BA treatment also improved renal corpuscle morphology. Overall, our findings demonstrate that treatment with BA effectively prevented kidney damage induced by EG+AC ingestion, thereby improving renal function in the urolithiasis model. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

44 pages, 2707 KiB  
Review
Unveiling the Multifaceted Pharmacological Actions of Indole-3-Carbinol and Diindolylmethane: A Comprehensive Review
by Yadava Srikanth, Dontiboina Harikrishna Reddy, Vinjavarapu Lakshmi Anusha, Naresh Dumala, Matte Kasi Viswanadh, Guntupalli Chakravarthi, Buchi N. Nalluri, Ganesh Yadagiri and Kakarla Ramakrishna
Plants 2025, 14(5), 827; https://doi.org/10.3390/plants14050827 - 6 Mar 2025
Viewed by 1017
Abstract
Cruciferae family vegetables are remarkably high in phytochemicals such as Indole-3-carbinol (I3C) and Diindolylmethane (DIM), which are widely known as nutritional supplements. I3C and DIM have been studied extensively in different types of cancers like breast, prostate, endometrial, colorectal, gallbladder, hepatic, and cervical, [...] Read more.
Cruciferae family vegetables are remarkably high in phytochemicals such as Indole-3-carbinol (I3C) and Diindolylmethane (DIM), which are widely known as nutritional supplements. I3C and DIM have been studied extensively in different types of cancers like breast, prostate, endometrial, colorectal, gallbladder, hepatic, and cervical, as well as cancers in other tissues. In this review, we summarized the protective effects of I3C and DIM against cardiovascular, neurological, reproductive, metabolic, bone, respiratory, liver, and immune diseases, infections, and drug- and radiation-induced toxicities. Experimental evidence suggests that I3C and DIM offer protection due to their antioxidant, anti-inflammatory, antiapoptotic, immunomodulatory, and xenobiotic properties. Apart from the beneficial effects, the present review also discusses the possible toxicities of I3C and DIM that are reported in various preclinical investigations. So far, most of the reports about I3C and DIM protective effects against various diseases are only from preclinical studies; this emphasizes the dire need for large-scale clinical trials on these phytochemicals against human diseases. Further, in-depth research is required to improve the bioavailability of these two phytochemicals to achieve the desirable protective effects. Overall, our review emphasizes that I3C and DIM may become potential drug candidates for combating dreadful human diseases. Full article
Show Figures

Figure 1

Other

Jump to: Research, Review

29 pages, 4402 KiB  
Systematic Review
Plant-Derived Monoterpene Therapies in Parkinson’s Disease Models: Systematic Review and Meta-Analysis
by Matías Jávega-Cometto, Aracely J. Naranjo-Viteri, Leandro G. Champarini, Claudia B. Hereñú and Rosana Crespo
Plants 2025, 14(7), 999; https://doi.org/10.3390/plants14070999 - 22 Mar 2025
Viewed by 415
Abstract
Monoterpenes (MTs) are plants’ secondary metabolites and major components of essential oils (EOs), widely used in the pharmaceutical industry. However, its neuroprotective effects, particularly in Parkinson’s disease (PD) have not been fully demonstrated. PD is a progressive neurological disorder marked by dopaminergic neuron [...] Read more.
Monoterpenes (MTs) are plants’ secondary metabolites and major components of essential oils (EOs), widely used in the pharmaceutical industry. However, its neuroprotective effects, particularly in Parkinson’s disease (PD) have not been fully demonstrated. PD is a progressive neurological disorder marked by dopaminergic neuron loss in the substantia nigra, motor symptoms being the most reported ones. This review evaluates the evidence supporting the use of MTs as potential neuroprotective agents. PubMed, SCOPUS, Google Scholar, and ScienceDirect databases were searched for articles on MTs in murine models with any type of administration. The PRISMA guidelines were followed. After screening 405 records, 32 were included in the systematic review and 30 were included in the meta-analysis. Fifteen MTs, commonly found in EOs, were identified as potential therapeutic agents for PD. The meta-analysis revealed that MTs administration improved motor performance, increased tyrosine hydroxylase levels, reduced oxidative stress markers (malondialdehyde) and proinflammatory cytokines (IL-6, IL-1, TNF-α), and enhanced antioxidant enzymes (catalase, superoxide dismutase) in parkinsonian animals. The antioxidant and anti-inflammatory properties of MTs appear to be key mechanisms in mitigating dopaminergic neurodegeneration. However, further clinical research is essential to translate these findings into practical applications. Full article
Show Figures

Figure 1

Back to TopTop