Recent Progress in Exploring Plant Metabolic Pathways: Unraveling the Complexity of Plant Biochemistry

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Physiology and Metabolism".

Deadline for manuscript submissions: 20 February 2026 | Viewed by 1105

Special Issue Editors

Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, School of Life Sciences, Southwest University, Chongqing 400715, China
Interests: secondary metabolites; genetics; plant metabolism; plant biochemistry
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biological Sciences, Life Science and Technology Institute, Michigan Technological University, Houghton, MI 49931, USA
Interests: genetic improvement of blueberries; microRNA technologies
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to announce a Special Issue of Plants titled "Recent Progress in Exploring Plant Metabolic Pathways: Unraveling the Complexity of Plant Biochemistry". This collection aims to highlight recent advances in our understanding of plant metabolic networks and their roles in growth, development, stress responses, and evolutionary adaptation.

We welcome original research articles and reviews that offer novel insights into the structure, function, regulation, and evolution of metabolic pathways in plants. Topics of interest include, but are not limited to, the following.

  • Primary Metabolism: Studies exploring central metabolic pathways such as glycolysis, the TCA cycle, and the pentose phosphate pathway, including research on regulatory mechanisms, enzyme functions, and the influence of primary metabolism on plant physiology.
  • Specialized Metabolism and Structural Biosynthesis: Research on the biosynthesis and regulation of secondary metabolites and structural compounds, including those involved in defense, signaling, or the formation of plant cell walls. We encourage contributions that examine metabolic integration and functional diversity in these pathways.
  • Metabolic Engineering and Synthetic Biology: Submissions focusing on the modification or reconstruction of metabolic networks to improve crop traits, enhance metabolite production, or increase environmental resilience, including computational modeling and pathway optimization.
  • Environmental and Developmental Regulation of Metabolism: Articles addressing how metabolic processes are influenced by abiotic stress, biotic interactions, or developmental cues, with an emphasis on adaptive responses and regulatory mechanisms at the molecular and genetic levels.
  • Gene Family Evolution and Functional Innovation: We welcome studies investigating the evolution and diversification of gene families involved in metabolic regulation, signal transduction, or stress adaptation. Emphasis may be placed on comparative genomics, functional characterization, and evolutionary mechanisms driving metabolic innovation.
  • Systems Biology and Multi-Omics Integration: Contributions that utilize metabolomics, transcriptomics, proteomics, and integrative approaches to provide system-level insights into plant metabolism and its regulation.

This Special Issue provides a platform on which to share recent discoveries, emerging tools, and conceptual advances that contribute to a deeper understanding of plant metabolic complexity. We believe it will be a valuable resource for researchers working across plant biology, biotechnology, and systems science.

Dr. Ting Lan
Prof. Dr. Guiliang Tang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant metabolism
  • metabolic pathways
  • primary metabolism
  • secondary metabolism
  • metabolic engineering
  • gene family evolution
  • abiotic and biotic stress
  • plant biochemistry
  • systems biology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3549 KiB  
Article
Functional Characterization of PtoWOX1 in Regulating Leaf Morphogenesis and Photosynthesis in Populus tomentosa
by Feng Tang, Minghui He, Shi Liang, Meng Zhang, Xiaowei Guo, Yuxian Dou, Qin Song, Cunfeng Zhao and Ting Lan
Plants 2025, 14(14), 2138; https://doi.org/10.3390/plants14142138 - 10 Jul 2025
Viewed by 218
Abstract
Leaves are essential for photosynthesis and transpiration, directly influencing plant growth and development. Leaf morphology, such as length, width, and area, affects photosynthetic efficiency and transpiration rates. In this study, we investigated the role of PtoWOX1 in leaf morphogenesis by generating both overexpression [...] Read more.
Leaves are essential for photosynthesis and transpiration, directly influencing plant growth and development. Leaf morphology, such as length, width, and area, affects photosynthetic efficiency and transpiration rates. In this study, we investigated the role of PtoWOX1 in leaf morphogenesis by generating both overexpression and CRISPR/Cas9 knockout lines in P. tomentosa. The results showed that PtoWOX1A and PtoWOX1B encode nuclear-localized transcription factors highly expressed in young leaves, particularly in palisade and epidermal cells. Knockout of PtoWOX1 resulted in reduced leaf width and area, enlarged upper epidermal cells, and lower stomatal density. Overexpression led to wrinkled leaf surfaces and reduced margin serration. Anatomical analysis revealed altered palisade cell arrangement and increased leaf thickness in knockout lines, accompanied by higher chlorophyll content and enhanced photosynthetic rates. Additionally, PtoWOX1A interacts with PtoYAB3B, suggesting a complex that regulates leaf margin development. These findings clarify the function of PtoWOX1 in regulating mid-lateral axis development and leaf margin morphology and provide new insights for the molecular breeding of poplar. Full article
Show Figures

Figure 1

15 pages, 1827 KiB  
Article
Genome-Wide Identification and Evolutionary Analysis of m6A-Related Gene Family in Poplar Nanlin895
by Zeyu Li, Rongxia Liu, Mingqiang Zhu, Jinye Zhang, Zhoujin Li, Kaixin Huang, Zehua Ren, Yan Zhao, Keming Luo and Qin Song
Plants 2025, 14(13), 2017; https://doi.org/10.3390/plants14132017 - 1 Jul 2025
Viewed by 334
Abstract
Background: N6-methyladenosine (m6A) is the most prevalent chemical modification of eukaryotic RNA, playing a crucial role in regulating plant growth and development, stress responses, and other essential biological processes. The enzymes involved in m6A modification—methyltransferases (writers), demethylases (erasers), and recognition proteins (readers)—have been [...] Read more.
Background: N6-methyladenosine (m6A) is the most prevalent chemical modification of eukaryotic RNA, playing a crucial role in regulating plant growth and development, stress responses, and other essential biological processes. The enzymes involved in m6A modification—methyltransferases (writers), demethylases (erasers), and recognition proteins (readers)—have been identified in various plant species; however, their roles in the economically significant tree species Populus deltoides × P. euramericana (NL895) remain underexplored. Results: In this study, we identified 39 m6A-related genes in the NL895 genome, comprising 8 writers, 13 erasers, and 18 readers. Evolutionary analysis indicated that the expansion of writers and readers primarily resulted from whole-genome duplication events. Purifying selection pressures were observed on all duplicated gene pairs, suggesting their essential roles in functional differentiation. Phylogenetic analysis revealed that writers, erasers, and readers are categorized into six, four, and two groups, respectively, with these genes being more conserved among dicotyledonous plants. Gene structure, protein domains, and motifs exhibited greater conservation within the same group. Promoter analysis of m6A-related genes showed enrichment of cis-acting elements associated with responses to light, phytohormones, and stress, indicating their potential involvement in gene expression regulation. Under cadmium treatment, the expression of all writers was significantly upregulated in both the aboveground and root tissues of NL895. Conclusions: This study systematically identified m6A-related gene families in Populus deltoides × P. euramericana (NL895), elucidating their evolutionary patterns and expression regulation characteristics. These findings provide a theoretical foundation for analyzing the molecular mechanisms of m6A modification in poplar growth, development, and stress adaptation, and offered candidate genes for molecular breeding in forest trees. Full article
Show Figures

Figure 1

14 pages, 4930 KiB  
Article
The Fiber Cell-Specific Overexpression of COMT2 Modulates Secondary Cell Wall Biosynthesis in Poplar
by Hanyu Chen, Hong Wang, Zhengjie Zhao, Jiarui Pan, Yao Yao, Yihan Wang, Keming Luo and Qin Song
Plants 2025, 14(12), 1739; https://doi.org/10.3390/plants14121739 - 6 Jun 2025
Viewed by 417
Abstract
Wood, as a natural and renewable resource, plays a crucial role in industrial production and daily life. Lignin, as one of the three major components of the plant cell secondary wall, plays a key role in conferring mechanical strength and enhancing stress resistance. [...] Read more.
Wood, as a natural and renewable resource, plays a crucial role in industrial production and daily life. Lignin, as one of the three major components of the plant cell secondary wall, plays a key role in conferring mechanical strength and enhancing stress resistance. The caffeic acid-O-methyltransferase (COMT) family of oxygen-methyltransferases is a core regulatory node in the downstream pathway of lignin biosynthesis. Here, our report shows that caffeic acid-O-methyltransferase 2 (COMT2) exhibits high conservation across several species. Tissue expression analysis reveals that COMT2 is specifically highly expressed in the secondary xylem of Populus tomentosa stems. We demonstrated that the specific overexpression of COMT2 in fiber cells of Populus tomentosa led to a significant increase in plant height, stem diameter, internode number, and stem dry weight. Furthermore, we found that the specific overexpression of COMT2 in fiber cells promotes xylem differentiation, lignin accumulation, and the thickening of the secondary cell wall (SCW) in fiber cells. Our results indicate that key downstream lignin biosynthesis enzyme genes are upregulated in transgenic plants. Additionally, mechanical properties of stem bending resistance, puncture resistance, and compressive strength in the transgenic lines are significantly improved. Moreover, we further created the DUFpro:COMT2 transgenic lines of Populus deltoides × Populus. euramericana cv ‘Nanlin895’ to verify the functional conservation of COMT2 in closely related poplar species. The DUFpro:COMT2 Populus deltoides × Populus. euramericana cv ‘Nanlin895’ transgenic lines exhibited phenotypes similar to those observed in the P. tomentosa transgenic plants, which showed enhanced growth, increased lignin accumulation, and greater wood strength. Overall, the specific overexpression of the caffeic acid O-methyltransferase gene COMT2 in poplar stem fiber cells has enhanced the wood biomass, wood properties, and mechanical strength of poplar stems. Full article
Show Figures

Figure 1

Back to TopTop