Functional Characterization of PtoWOX1 in Regulating Leaf Morphogenesis and Photosynthesis in Populus tomentosa
Abstract
1. Introduction
2. Results
2.1. Identification of PtoWOX1 in P. tomentosa
2.2. PtoWOX1 Regulates Leaf Morphogenesis in P. tomentosa
2.3. PtoWOX1 Influences Epidermal Cell Development in P. tomentosa
2.4. PtoWOX1 Influences Photosynthetic Efficiency in P. tomentosa
2.5. PtoWOX1 Affects Palisade Cell Morphology in P. tomentosa
2.6. PtoWOX1 and PtoYAB3B Cooperatively Regulate Leaf Morphogenesis in P. tomentosa
3. Discussion
3.1. PtoWOX1 Is Involved in the Mid-Lateral Growth of Leaves in P. tomentosa
3.2. PtoWOX1 and PtoYAB3B Synergistically Regulate Leaf Margins
3.3. Narrow-Leaf Phenotype Is an ‘Ideal Leaf Shape’
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Vector Construction and Plant Transformation
4.3. RNA Extraction and Quantitative RT-PCR
4.4. Paraffin Sectioning of Leaves
4.5. GUS Staining
4.6. Leaf Epidermis Observation
4.7. Measurement of Photosynthetic Parameters
4.8. Subcellular Localization Assay
4.9. Yeast Two-Hybrid Assay
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tsukaya, H. Leaf shape: Genetic controls and environmental factors. Int. J. Dev. Biol. 2005, 49, 547–555. [Google Scholar] [CrossRef]
- Forrestel, E.J.; Ackerly, D.D.; Emery, N.C. The joint evolution of traits and habitat: Ontogenetic shifts in leaf morphology and wetland specialization in Lasthenia. New Phytol. 2015, 208, 949–959. [Google Scholar] [CrossRef]
- Byrne, M.E. Making leaves. Curr. Opin. Plant Biol. 2012, 15, 24–30. [Google Scholar] [CrossRef]
- Satterlee, J.W.; Scanlon, M.J. Plant Development: How Leaves Take Shape. Curr. Biol. 2019, 29, R803–R805. [Google Scholar] [CrossRef]
- Nakayama, H.; Leichty, A.R.; Sinha, N.R. Molecular mechanisms underlying leaf development, morphological diversification, and beyond. Plant Cell 2022, 34, 2534–2548. [Google Scholar] [CrossRef]
- Sarojam, R.; Sappl, P.G.; Goldshmidt, A.; Efroni, I.; Floyd, S.K.; Eshed, Y.; Bowman, J.L. Differentiating arabidopsis shoots from leaves by combined YABBY activities. Plant Cell 2010, 22, 2113–2130. [Google Scholar] [CrossRef]
- Sarvepalli, K.; Das Gupta, M.; Challa, K.R.; Nath, U. Molecular cartography of leaf development—Role of transcription factors. Curr. Opin. Plant Biol. 2018, 47, 22–31. [Google Scholar] [CrossRef]
- Waites, R.; Hudson, A. phantastica: A gene required for dorsoventrality of leaves in Antirrhinum majus. Development 1995, 121, 2143–2154. [Google Scholar] [CrossRef]
- Lin, H.; Niu, L.; McHale, N.A.; Ohme-Takagi, M.; Mysore, K.S.; Tadege, M. Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. Proc. Natl. Acad. Sci. USA 2012, 110, 366–371. [Google Scholar] [CrossRef]
- Nakata, M.; Matsumoto, N.; Tsugeki, R.; Rikirsch, E.; Laux, T.; Okada, K. Roles of the middle domain–specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 2012, 24, 519–535. [Google Scholar] [CrossRef]
- Vandenbussche, M.; Horstman, A.; Zethof, J.; Koes, R.; Rijpkema, A.S.; Gerats, T. Differential recruitment of WOX transcrip-tion factors for lateral development and organ fusion in Petunia and Arabidopsis. Plant Cell 2009, 21, 2269–2283. [Google Scholar] [CrossRef]
- Tadege, M.; Lin, H.; Bedair, M.; Berbel, A.; Wen, J.; Rojas, C.M.; Niu, L.; Tang, Y.; Sumner, L.; Ratet, P.; et al. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. Plant Cell 2011, 23, 2125–2142. [Google Scholar] [CrossRef]
- Cho, S.H.; Yoo, S.C.; Zhang, H.; Pandeya, D.; Koh, H.J.; Hwang, J.Y.; Kim, G.T.; Paek, N.C. The rice narrow leaf 2 and narrow leaf 3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. New Phytol. 2013, 198, 1071–1084. [Google Scholar] [CrossRef]
- Ishiwata, A.; Ozawa, M.; Nagasaki, H.; Kato, M.; Noda, Y.; Yamaguchi, T.; Nosaka, M.; Shimizu-Sato, S.; Nagasaki, A.; Maekawa, M.; et al. Two WUSCHEL-related homeobox genes, narrow leaf 2 and narrow leaf 3, control leaf width in rice. Plant Cell Physiol. 2013, 54, 779–792. [Google Scholar] [CrossRef]
- Nardmann, J.; Ji, J.; Werr, W.; Scanlon, M.J. The maize duplicate genes narrow sheath 1 and narrow sheath 2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 2004, 131, 2827–2839. [Google Scholar] [CrossRef]
- Hu, Y.; Tang, F.; Zhang, D.; Shen, S.; Peng, X. Integrating genome-wide association and transcriptome analysis to provide molecular insights into heterophylly and eco-adaptability in woody plants. Hortic. Res. 2023, 10, uhad212. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Li, G.; Tang, Y.; Kramer, E.M.; Tadege, M. STENOFOLIA recruits TOPLESS to repress ASYMMETRIC LEAVES2 at the leaf margin and promote leaf blade outgrowth in Medicago truncatula. Plant Cell 2014, 26, 650–664. [Google Scholar] [CrossRef]
- Guan, C.; Wu, B.; Yu, T.; Wang, Q.; Krogan, N.T.; Liu, X.; Jiao, Y. Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis. Curr. Biol. 2017, 27, 2940–2950.e4. [Google Scholar] [CrossRef]
- Wang, Q.; Marconi, M.; Guan, C.; Wabnik, K.; Jiao, Y. Polar auxin transport modulates early leaf flattening. Proc. Natl. Acad. Sci. USA 2022, 119, e2215569119. [Google Scholar] [CrossRef]
- Wolabu, T.W.; Wang, H.; Tadesse, D.; Zhang, F.; Behzadirad, M.; Tvorogova, V.E.; Abdelmageed, H.; Liu, Y.; Chen, N.; Chen, J.; et al. WOX9 functions antagonistic to STF and LAM1 to regulate leaf blade expansion in Medicago truncatula and Nicotiana sylvestris. New Phytol. 2021, 229, 1582–1597. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Wolabu, T.; Wang, Z.; Liu, Y.; Tadesse, D.; Chen, N.; Xu, A.; Bi, X.; Zhang, Y.; et al. WOX fam-ily transcriptional regulators modulate cytokinin homeostasis during leaf blade development in Medicago truncatula and Nicotiana sylvestris. Plant Cell 2022, 34, 3737–3753. [Google Scholar] [CrossRef]
- Zhao, F.; Du, F.; Oliveri, H.; Zhou, L.; Ali, O.; Chen, W.; Feng, S.; Wang, Q.; Lü, S.; Long, M.; et al. Microtubule-mediated wall anisotropy contributes to leaf blade flattening. Curr. Biol. 2020, 30, 3972–3985.e6. [Google Scholar] [CrossRef] [PubMed]
- Bastiaanse, H.; Henry, I.M.; Tsai, H.; Lieberman, M.; Canning, C.; Comai, L.; Groover, A. A systems genetics approach to deciphering the effect of dosage variation on leaf morphology in Populus. Plant Cell 2020, 33, 940–960. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Zhu, X.; Gao, P.; Jiang, L.; Wu, R. Identification of quantitative trait loci for altitude adaptation of tree leaf shape with populus szechuanica in the Qinghai-Tibetan plateau. Front. Plant Sci. 2020, 11, 632. [Google Scholar] [CrossRef]
- Fu, Y.; Li, F.; Mu, S.; Jiang, L.; Ye, M.; Wu, R. Heterophylly Quantitative Trait Loci Respond to Salt Stress in the Desert Tree Populus euphratica. Front. Plant Sci. 2021, 12, 692494. [Google Scholar] [CrossRef]
- Manuela, D.; Xu, M. Patterning a Leaf by Establishing Polarities. Front. Plant Sci. 2020, 11, 568730. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Bu, C.; Chen, P.; El-Kassaby, Y.A.; Zhang, D.; Song, Y. Enhanced genome-wide association reveals the role of YABBY11-NGATHA-LIKE1 in leaf serration development of Populus. Plant Physiol. 2022, 191, 1702–1718. [Google Scholar] [CrossRef]
- van der Graaff, E.; Laux, T.; Rensing, S.A. The WUS homeobox-containing (WOX) protein family. Genome Biol. 2009, 10, 248. [Google Scholar] [CrossRef]
- Sarkar, A.K.; Luijten, M.; Miyashima, S.; Lenhard, M.; Hashimoto, T.; Nakajima, K.; Scheres, B.; Heidstra, R.; Laux, T. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 2007, 446, 811–814. [Google Scholar] [CrossRef]
- Drost, D.R.; Puranik, S.; Novaes, E.; Novaes, C.R.; Dervinis, C.; Gailing, O.; Kirst, M. Genetical genomics of Populus leaf shape variation. BMC Plant Biol. 2015, 15, 166. [Google Scholar] [CrossRef]
- Chhetri, H.B.; Macaya-Sanz, D.; Kainer, D.; Biswal, A.K.; Evans, L.M.; Chen, J.; Collins, C.; Hunt, K.; Mohanty, S.S.; Rosenstiel, T.; et al. Multitrait genome-wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits. New Phytol. 2019, 223, 293–309. [Google Scholar] [CrossRef] [PubMed]
- Mähler, N.; Schiffthaler, B.; Robinson, K.M.; Terebieniec, B.K.; Vucak, M.; Mannapperuma, C.; Bailey, M.E.S.; Jansson, S.; Hvidsten, T.R.; Street, N.R. Leaf shape in Populus tremula is a complex, omnigenic trait. Ecol. Evol. 2020, 10, 11922–11940. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Wu, B.; Feng, S.; Lü, S.; Guan, C.; Zhang, X.; Qiu, D.; Hu, Y.; Zhou, Y.; Li, C.; et al. Mechanical regulation of organ asymmetry in leaves. Nat. Plants 2017, 3, 724–733. [Google Scholar] [CrossRef]
- Higuchi, Y.; Kawakita, A. Leaf shape deters plant processing by an herbivorous weevil. Nat. Plants 2019, 5, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Andries, J.A.; Jones, J.E.; Sloane, L.W.; Marshall, J.G. Effects of Super Okra Leaf Shape on Boll Rot, Yield, and Other Characters of Upland Cotton, Gossypium hirsutum L. Crop. Sci. 1970, 10, 403–407. [Google Scholar] [CrossRef]
- Andres, R.J.; Coneva, V.; Frank, M.H.; Tuttle, J.R.; Samayoa, L.F.; Han, S.-W.; Kaur, B.; Zhu, L.; Fang, H.; Bowman, D.T.; et al. Modifications to a LATE MERISTEM IDENTITY1 gene are responsible for the major leaf shapes of Upland cotton (Gossypium hirsutum L.). Proc. Natl. Acad. Sci. USA 2016, 114, E57–E66. [Google Scholar] [CrossRef]
- Fan, D.; Liu, T.; Li, C.; Jiao, B.; Li, S.; Hou, Y.; Luo, K. Efficient CRISPR/Cas9-mediated Targeted Mutagenesis in Populus in the First Generation. Sci. Rep. 2015, 5, 12217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.; He, M.; Liang, S.; Zhang, M.; Guo, X.; Dou, Y.; Song, Q.; Zhao, C.; Lan, T. Functional Characterization of PtoWOX1 in Regulating Leaf Morphogenesis and Photosynthesis in Populus tomentosa. Plants 2025, 14, 2138. https://doi.org/10.3390/plants14142138
Tang F, He M, Liang S, Zhang M, Guo X, Dou Y, Song Q, Zhao C, Lan T. Functional Characterization of PtoWOX1 in Regulating Leaf Morphogenesis and Photosynthesis in Populus tomentosa. Plants. 2025; 14(14):2138. https://doi.org/10.3390/plants14142138
Chicago/Turabian StyleTang, Feng, Minghui He, Shi Liang, Meng Zhang, Xiaowei Guo, Yuxian Dou, Qin Song, Cunfeng Zhao, and Ting Lan. 2025. "Functional Characterization of PtoWOX1 in Regulating Leaf Morphogenesis and Photosynthesis in Populus tomentosa" Plants 14, no. 14: 2138. https://doi.org/10.3390/plants14142138
APA StyleTang, F., He, M., Liang, S., Zhang, M., Guo, X., Dou, Y., Song, Q., Zhao, C., & Lan, T. (2025). Functional Characterization of PtoWOX1 in Regulating Leaf Morphogenesis and Photosynthesis in Populus tomentosa. Plants, 14(14), 2138. https://doi.org/10.3390/plants14142138