Plant Invasion 2023

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Ecology".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 17498

Special Issue Editors


E-Mail Website
Guest Editor
Departamento de Hidrobiologia, UFSCar, São Carlos, SP, Brasil
Interests: plant ecology; plant conservation; plant invasion
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
Interests: microbial ecology; microbial response or effect; microbial interaction; structure and function of microbial communities; plant-microbial interaction; microorganism diversity and function; rhizosphere; endophyte; pollution microbiology; sulfur cycle; carbon cycle microorganism; sediment microbiology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
Interests: mechanisms of invasive plants; invasive plants respond to nutrient stress; interactions of invasive plants with their symbiotic microorganism

Special Issue Information

Dear Colleagues,

Invasive plants mediate complex abiotic and biotic interactions with an impact on biodiversity, ecosystem functioning, the economy, and human health. In recent years, a large number of papers on invasive plants have been produced, but the search for scientific information is increasing, as invasion is a continuous and fast process operating along the Anthropocene. Advances in the physiology and ecology of invasive plant species are crucial for management and control strategies that have a minimum effect on ecosystems. The interactions in which invasive species are involved are becoming even more complex. Also, although native, some species behave as if invasive, but they have been neglected in all aspects. To some extent, human impacts are also affecting the population growth rate of some native species, which, in turn, may cause severe impacts on diversity and human health. In recent years, the pandemic scenario increased concern regarding human diseases mediated by environmental changes. The current and future scenario of climate change that our planet is facing creates instability in terms of the invasion of natural habitats. In this context, we must know the role of invasive plant species in such complex situations to achieve advances in their control and the prevention of future problems.

Prof. Dr. Dalva Maria da Silva Matos
Prof. Dr. Daolin Du
Dr. Shanshan Qi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant invasions
  • ecology of invasive plants
  • climate change and biological invasion
  • invasion dynamics
  • native species as invasive
  • plant invasion and one health
  • prevention and management of plant invasions
  • policy, legislation, and governance regarding invasive plants
  • economic impacts of plant invasion
  • citizen science applied to plant invasion

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

15 pages, 2689 KiB  
Article
Shrub Encroachment: A Catalyst for Enhanced Soil Nutrients Storage in the Altai Mountains
by Xuexi Ma, Lianlian Fan, Abbas Fakher, Yaoming Li, Jiefei Mao, Meiniu Yang, Meng Yan, Bo Zhang and Yingzhi Gao
Plants 2025, 14(4), 623; https://doi.org/10.3390/plants14040623 - 19 Feb 2025
Cited by 1 | Viewed by 526
Abstract
Shrub encroachment in grasslands has a major impact on soil carbon storage (SOCS) and soil total nitrogen (STNS), which affects nutrient cycling and ecosystem processes. We explored the effects of shrub encroachment on SOCS and STNS in [...] Read more.
Shrub encroachment in grasslands has a major impact on soil carbon storage (SOCS) and soil total nitrogen (STNS), which affects nutrient cycling and ecosystem processes. We explored the effects of shrub encroachment on SOCS and STNS in five grassland types in the Altai Mountains: mountain meadows, temperate meadow steppe, temperate steppe, temperate steppe desert, and temperate desert steppe. Shrub encroachment considerably improved SOCS and STNS, with the greatest increases occurring in locations with high encroachment. The interaction between grassland type and encroachment extent also significantly influenced soil properties, including bulk density, soil water content, and microbial carbon and nitrogen. Specifically, SOCS increased by 16%, 77%, and 129%, and STNS increased by 43%, 94%, and 127% under low, medium, and high shrub encroachment, respectively. The soil stoichiometry shifted, with C/N ratios decreasing and C/P and N/P ratios increasing with shrub encroachment. Structural equation modeling (SEM) revealed that shrub encroachment indirectly affected SOCS and STNS through changes in soil nutrients and climate. Our findings suggest that shrub encroachment promotes soil C sequestration and alters soil nutrient cycling, with implications for grassland management and ecological restoration in the face of global climate change. Full article
(This article belongs to the Special Issue Plant Invasion 2023)
Show Figures

Figure 1

14 pages, 715 KiB  
Article
Effects of Acmella radicans Invasion on Soil Seed Bank Community Characteristics in Different Habitats
by Xiaohan Wu, Kexin Yang, Fengping Zheng, Gaofeng Xu, Zewen Fan, David Roy Clements, Yunhai Yang, Shaosong Yang, Guimei Jin, Fudou Zhang and Shicai Shen
Plants 2024, 13(18), 2644; https://doi.org/10.3390/plants13182644 - 21 Sep 2024
Viewed by 1210
Abstract
To examine the effects of the recent Acmella radicans invasion on plant community and diversity in invaded habitats, the composition, density, species richness, diversity indices, and evenness index of the soil seed bank community of two different habitats (wasteland and cultivated land) in [...] Read more.
To examine the effects of the recent Acmella radicans invasion on plant community and diversity in invaded habitats, the composition, density, species richness, diversity indices, and evenness index of the soil seed bank community of two different habitats (wasteland and cultivated land) in Yunnan Province, China, were analyzed through field sampling and greenhouse germination tests. A total of 28 species of plants belonging to 15 families and 28 genera, all annual herbs, were found in the soil seed bank. Seed densities and species number in the seed bank tended to be greater in April than in October; cultivated land also featured higher seed densities and species numbers compared to wasteland. With increased A. radicans cover, the seed bank population of A. radicans also significantly increased, but the seed bank populations of many other dominant species (e.g., Ageratum conyzoides and Gamochaeta pensylvanica) and native species (e.g., Laggera crispata and Poa annua) clearly declined. The germination of A. radicans seeds was concentrated during the period from the 4th to the 5th weeks. Vertically, the seed number of A. radicans was significantly different among the 0–5 cm, 5–10 cm and 10–20 cm layers that accounted for 80.7–90.6%, 9.4–16.1% and 0.0–3.2% of the total seed density in wasteland, respectively; and in cultivated land, A. radicans accounted for 56.8–64.9%, 26.7–31.8% and 8.1–13.5% of the total seed density, respectively. With reduced A. radicans cover, the species richness, Simpson index, Shannon–Wiener index, and Pielou indices of the weed community generally increased, and most diversity indices of weed communities in cultivated land were lower than in wasteland under the same cover of A. radicans. The results indicate that the invasion of A. radicans has negatively affected local weed community composition and reduced weed community diversity, and that these negative impacts in cultivated land may be enhanced by human disturbance. Our study was the first to elucidate the influence of A. radicans invasion on soil seed bank community characteristics in invaded habitats, providing a better understanding of its invasion and spread mechanisms in order to aid in developing a scientific basis for the prevention and control of this invader. Full article
(This article belongs to the Special Issue Plant Invasion 2023)
Show Figures

Figure 1

13 pages, 1913 KiB  
Article
Chemical Management Strategies of Pimelea trichostachya Lindl. Using Pre- and Post-Emergence Herbicides
by Rashid Saleem, Shane Campbell, Mary T. Fletcher, Sundaravelpandian Kalaipandian and Steve W. Adkins
Plants 2024, 13(10), 1342; https://doi.org/10.3390/plants13101342 - 13 May 2024
Viewed by 1273
Abstract
Pimelea trichostachya Lindl. is a native Australian forb responsible for livestock poisoning and reducing the productivity and sustainability of grazing enterprises. This study was conducted as a pot trial under controlled conditions to investigate an effective chemical management strategy for P. trichostachya, [...] Read more.
Pimelea trichostachya Lindl. is a native Australian forb responsible for livestock poisoning and reducing the productivity and sustainability of grazing enterprises. This study was conducted as a pot trial under controlled conditions to investigate an effective chemical management strategy for P. trichostachya, a method that did not leave standing dead plant material, as such material can also be toxic to grazing cattle. Three herbicides, including one pre-emergence (tebuthiuron) and two post-emergence herbicides (2,4-D and metsulfuron-methyl), were tested in pot trials for their efficacy on P. trichostachya. Results showed that tebuthiuron applied as either a granular (10% active ingredient, a.i.) or pelleted (20% a.i.) form efficiently reduced the emergence of P. trichostachya seedlings. Although some seedlings emerged, they perished within 7 days post treatment, leaving no residual plant matter. Testing now needs to be undertaken under field conditions to validate the findings within vegetation communities where potential non-target impacts need to be accounted for as well. The post-emergence application of 2,4-D and metsulfuron-methyl demonstrated that the highest efficacy and reduced application rates were achieved by treating earlier growth stages (i.e., seedlings) of P. trichostachya plants. In addition, the amount of toxic dead plant material was minimized due to the faster degradation of these small plants. These findings offer practical, cost-effective solutions for sustaining grazing lands from P. trichostachya challenges. Full article
(This article belongs to the Special Issue Plant Invasion 2023)
Show Figures

Figure 1

17 pages, 5830 KiB  
Article
Strong Invasive Mechanism of Wedelia trilobata via Growth and Physiological Traits under Nitrogen Stress Condition
by Zhi-Cong Dai, Fang-Li Kong, Yi-Fan Li, Riaz Ullah, Essam A. Ali, Farrukh Gul, Dao-Lin Du, Yi-Fan Zhang, Hui Jia, Shan-Shan Qi, Nisar Uddin and Irfan Ullah Khan
Plants 2024, 13(3), 355; https://doi.org/10.3390/plants13030355 - 25 Jan 2024
Cited by 7 | Viewed by 2927
Abstract
Nitrogen (N) is one of the most crucial elements for plant growth. However, a deficiency of N affects plant growth and development. Wedelia trilobata is a notorious invasive plant species that exhibits superior tolerance to adapt to environmental stresses. Yet, research on the [...] Read more.
Nitrogen (N) is one of the most crucial elements for plant growth. However, a deficiency of N affects plant growth and development. Wedelia trilobata is a notorious invasive plant species that exhibits superior tolerance to adapt to environmental stresses. Yet, research on the growth and antioxidant defensive system of invasive Wedelia under low N stress, which could contribute to understanding invasion mechanisms, is still limited. Therefore, this study aims to investigate and compare the tolerance capability of invasive and native Wedelia under low and normal N conditions. Native and invasive Wedelia species were grown in normal and low-N conditions using a hydroponic nutrient solution for 8 weeks to assess the photosynthetic parameters, antioxidant activity, and localization of reactive oxygen species (ROS). The growth and biomass of W. trilobata were significantly (p < 0.05) higher than W. chinensis under low N. The leaves of W. trilobata resulted in a significant increase in chlorophyll a, chlorophyll b, and total chlorophyll content by 40.2, 56.2, and 46%, respectively, compared with W. chinensis. W. trilobata significantly enhanced antioxidant defense systems through catalase, peroxidase, and superoxide dismutase by 18.6%, 20%, and 36.3%, respectively, providing a positive response to oxidative stress caused by low N. The PCA analysis showed that W. trilobata was 95.3% correlated with physiological traits by Dim1 (79.1%) and Dim2 (16.3%). This study provides positive feedback on W. trilobata with respect to its comprehensive invasion mechanism to improve agricultural systems via eco-friendly approaches in N deficit conditions, thereby contributing to the reclamation of barren land. Full article
(This article belongs to the Special Issue Plant Invasion 2023)
Show Figures

Figure 1

12 pages, 1702 KiB  
Article
Persistence of Root Exudates of Sorghum bicolor and Solidago canadensis: Impacts on Invasive and Native Species
by Muhammad Rahil Afzal, Misbah Naz, Raza Ullah and Daolin Du
Plants 2024, 13(1), 58; https://doi.org/10.3390/plants13010058 - 23 Dec 2023
Cited by 3 | Viewed by 2639
Abstract
Root exudates of the invasive Solidago canadensis and the cereal crop Sorghum bicolor (L.) Moench cv. ‘Hybridsorgo’ were tested for allelopathic interactions against native and invasive plant species in a controlled environment. After the surface was sterilized, the seeds of two invasive species [...] Read more.
Root exudates of the invasive Solidago canadensis and the cereal crop Sorghum bicolor (L.) Moench cv. ‘Hybridsorgo’ were tested for allelopathic interactions against native and invasive plant species in a controlled environment. After the surface was sterilized, the seeds of two invasive species (Bromus sterilis and Veronica persica) and two native species (Youngia japonica and Rumex acetosa) were germinated and transplanted into the soil (1:1 mixture of coco peat and sand) that had been conditioned for one month by the cultivation of Solidago canadensis and Sorghum bicolor, both in combination or as unplanted controls. After an additional eight weeks of growth, morphometric measurements of the shoot and root, including foliar characteristics and above- and below-ground biomass accumulation, were performed. The results revealed significant inhibitory effects of root exudates released by Sorghum bicolor and Solidago canadensis on native species’ productivity and physiology. The invasive species exhibited variable growth responses, with Veronica persica showing reduced shoot and root expansion, but Bromus sterilis revealed increased shoot and root biomass allocation and nutrition under the exudate treatments. Exudates from Solidago canadensis and Sorghum bicolor together showed synergistic negative effects on native species, while they promoted growth and nutrition in Veronica persica. Taken together, the differential species responses indicate that the tested native species were more sensitive to the allelopathic compounds than the invasive species, which is in line with the theory of novel weapons. The legacy effects of root exudates of both Sorghum bicolor and Solidago canadensis could promote invasive establishment through imposing allelochemical interference competition against native plant species. Understanding the specific allelopathic mechanisms may help with the development of integrated strategies for managing invasive species. Full article
(This article belongs to the Special Issue Plant Invasion 2023)
Show Figures

Figure 1

Review

Jump to: Research, Other

18 pages, 8330 KiB  
Review
The Invasive Mechanisms of the Noxious Alien Plant Species Bidens pilosa
by Hisashi Kato-Noguchi and Denny Kurniadie
Plants 2024, 13(3), 356; https://doi.org/10.3390/plants13030356 - 25 Jan 2024
Cited by 22 | Viewed by 5210
Abstract
Bidens pilosa L. is native to tropical America and has widely naturized from tropical to warm temperate regions in Europe, Africa, Asia, Australia, and North and South America. The species has infested a wide range of habitats such as grasslands, forests, wetlands, streamlines, [...] Read more.
Bidens pilosa L. is native to tropical America and has widely naturized from tropical to warm temperate regions in Europe, Africa, Asia, Australia, and North and South America. The species has infested a wide range of habitats such as grasslands, forests, wetlands, streamlines, coastal areas, pasture, plantations, agricultural fields, roadsides, and railway sides and has become a noxious invasive weed species. B. pilosa forms thick monospecific stands, quickly expands, and threatens the indigenous plant species and crop production. It is also involved in pathogen transmission as a vector. The species was reported to have (1) a high growth ability, producing several generations in a year; (2) a high achene production rate; (3) different biotypes of cypselae, differently germinating given the time and condition; (4) a high adaptative ability to various environmental conditions; (5) an ability to alter the microbial community, including mutualism with arbuscular mycorrhizal fungi; and (6) defense functions against natural enemies and allelopathy. The species produces several potential allelochemicals such as palmitic acid, p-coumaric acid, caffeic acid, ferulic acid, p-hydroxybenzoic acid, vanillic acid, salycilic acid, quercetin, α-pinene, and limonene and compounds involved in the defense functions such as 1-phenylhepta-1,3,5-trine, 5-phenyl-2-(1-propynyl)-thiophene, 5-actoxy-2-phenylethinyl-thiophene, and icthyothereol acetate. These characteristics of B. pilosa may contribute to the naturalization and invasiveness of the species in the introduced ranges. This is the first review article focusing on the invasive mechanisms of the species. Full article
(This article belongs to the Special Issue Plant Invasion 2023)
Show Figures

Figure 1

Other

Jump to: Research, Review

9 pages, 1032 KiB  
Perspective
Nitrogen Deposition Amplifies the Legacy Effects of Plant Invasion
by Miaomiao Cui, Haochen Yu, Xue Fan, Mohsin Nawaz, Junjie Lian, Shihong Liu, Zhaoqi Zhu, Haiyan Zhang, Daolin Du and Guangqian Ren
Plants 2024, 13(1), 72; https://doi.org/10.3390/plants13010072 - 25 Dec 2023
Cited by 2 | Viewed by 2371
Abstract
The legacy effects of invasive plant species can hinder the recovery of native communities, especially under nitrogen deposition conditions, where invasive species show growth advantages and trigger secondary invasions in controlled areas. Therefore, it is crucial to thoroughly investigate the effects of nitrogen [...] Read more.
The legacy effects of invasive plant species can hinder the recovery of native communities, especially under nitrogen deposition conditions, where invasive species show growth advantages and trigger secondary invasions in controlled areas. Therefore, it is crucial to thoroughly investigate the effects of nitrogen deposition on the legacy effects of plant invasions and their mechanisms. The hypotheses of this study are as follows: (1) Nitrogen deposition amplifies the legacy effects of plant invasion. This phenomenon was investigated by analysing four potential mechanisms covering community system structure, nitrogen metabolism, geochemical cycles, and microbial mechanisms. The results suggest that microorganisms drive plant–soil feedback processes, even regulating or limiting other factors. (2) The impact of nitrogen deposition on the legacy effects of plant invasions may be intensified primarily through enhanced nitrogen metabolism via microbial anaerobes bacteria. Essential insights into invasion ecology and ecological management have been provided by analysing how nitrogen-fixing bacteria improve nitrogen metabolism and establish sustainable methods for controlling invasive plant species. This in-depth study contributes to our better understanding of the lasting effects of plant invasions on ecosystems and provides valuable guidance for future ecological management. Full article
(This article belongs to the Special Issue Plant Invasion 2023)
Show Figures

Figure 1

Back to TopTop