Special Issue "Flavonoid Intake and Human Health"

A special issue of Nutrients (ISSN 2072-6643).

Deadline for manuscript submissions: closed (30 November 2018).

Special Issue Editors

Prof. Claire Williams
E-Mail Website
Guest Editor
University of Reading, School of Psychology and Clinical Language Sciences, Reading, United Kingdom
Interests: health benefits of plant-derived chemicals; flavonoids and cognitive performance
Dr. Daniel Lamport
E-Mail Website
Guest Editor
School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom
Interests: Cognitive function, cognition, memory, executive function, type 2 diabetes, flavonoids, polyphenols, glycaemic index, glycaemic load, glucose

Special Issue Information

Dear Colleagues,

There is now a substantial body of literature that has investigated the potential benefits to health of acute and chronic flavonoid consumption. This Special Issue presents the leading evidence in the field, through a series of systematic reviews, original data sets, and commentaries focused on the following topics:

  • Exploring the cognitive benefits of epicatechin consumption with a mechanistic cerebral blood flow perspective
  • The interaction between acute flavonoid ingestion and acute exercise interventions for influencing polyphenolic gut peptides.
  • The efficacy of dietary flavonoids for prevention and treatment of metabolic disorders such as type 2 diabetes
  • An overview of the mechanistic complexities surrounding flavonoid intake and gut microbiota.
  • The interplay and overlap between cardiovascular health and cerebrovascular health following systematic flavonoid consumption
  • A detailed, critical review of the epidemiological evidence examining the link between dietary flavonoid consumption and chronic disease risk.

Prof. Claire Williams
Dr. Daniel Lamport
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Flavonoids
  • Cognitive performance
  • Gut microbiota
  • Cardiovascular
  • Exercise
  • Metabolism
  • Polyphenols
  • Cognition
  • Epidemiology

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Postprandial Effects of Blueberry (Vaccinium angustifolium) Consumption on Glucose Metabolism, Gastrointestinal Hormone Response, and Perceived Appetite in Healthy Adults: A Randomized, Placebo-Controlled Crossover Trial
Nutrients 2019, 11(1), 202; https://doi.org/10.3390/nu11010202 - 19 Jan 2019
Cited by 4
Abstract
The consumption of blueberries, as well as the phenolic compounds they contain, may alter metabolic processes related to type 2 diabetes. The study investigated the effects of adding 140 g of blueberries to a higher-carbohydrate breakfast meal on postprandial glucose metabolism, gastrointestinal hormone [...] Read more.
The consumption of blueberries, as well as the phenolic compounds they contain, may alter metabolic processes related to type 2 diabetes. The study investigated the effects of adding 140 g of blueberries to a higher-carbohydrate breakfast meal on postprandial glucose metabolism, gastrointestinal hormone response, and perceived appetite. As part of a randomized crossover design study, 17 healthy adults consumed a standardized higher-carbohydrate breakfast along with 2 treatments: (1) 140 g (1 cup) of whole blueberries and (2) a placebo gel (matched for calories, sugars, and fiber of the whole blueberries). Each subject participated in two 2-h meal tests on separate visits ≥8 days apart. Venous blood samples and perceived appetite ratings using visual analog scales were obtained prior to and at 30, 60, 90, and 120 min after consuming the breakfast meals. Results show that glucose metabolism, several gastrointestinal hormones, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), peptide YY (PYY) concentrations and perceived appetite did not change significantly with blueberry consumption. However, pancreatic polypeptide (PP) concentrations were statistically significantly higher (p = 0.0367), and the concentrations were higher during 30, 60, 90, and 120 min after consumption of the blueberry breakfast meal than the placebo breakfast meal. Additional research is needed to determine whether blueberries and other flavonoid-rich foods reduce type 2 diabetes risk by modifying gastrointestinal hormones and perceived appetite. Full article
(This article belongs to the Special Issue Flavonoid Intake and Human Health)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Increased Plasma Levels of Gut-Derived Phenolics Linked to Walking and Running Following Two Weeks of Flavonoid Supplementation
Nutrients 2018, 10(11), 1718; https://doi.org/10.3390/nu10111718 - 09 Nov 2018
Cited by 3
Abstract
Using a randomized, double-blinded, placebo-controlled, parallel group design, this investigation determined if the combination of two weeks of flavonoid supplementation (329 mg/day, quercetin, anthocyanins, flavan-3-ols mixture) and a 45-minute walking bout (62.2 ± 0.9% VO2max (maximal oxygen consumption rate)) enhanced the translocation [...] Read more.
Using a randomized, double-blinded, placebo-controlled, parallel group design, this investigation determined if the combination of two weeks of flavonoid supplementation (329 mg/day, quercetin, anthocyanins, flavan-3-ols mixture) and a 45-minute walking bout (62.2 ± 0.9% VO2max (maximal oxygen consumption rate)) enhanced the translocation of gut-derived phenolics into circulation in a group of walkers (n = 77). The walkers (flavonoid, placebo groups) were randomized to either sit or walk briskly on treadmills for 45 min (thus, four groups: placebo–sit, placebo–walk, flavonoid–sit, flavonoid–walk). A comparator group of runners (n = 19) ingested a double flavonoid dose for two weeks (658 mg/day) and ran for 2.5 h (69.2 ± 1.2% VO2max). Four blood samples were collected (pre- and post-supplementation, immediately post- and 24 h post-exercise/rest). Of the 76 metabolites detected in this targeted analysis, 15 increased after the 2.5 h run, and when grouped were also elevated post-exercise (versus placebo–sit) for the placebo– and flavonoid–walking groups (p < 0.05). A secondary analysis showed that pre-study plasma concentrations of gut-derived phenolics in the runners were 40% higher compared to walkers (p = 0.031). These data indicate that acute exercise bouts (brisk walking, intensive running) are linked to an increased translocation of gut-derived phenolics into circulation, an effect that is amplified when combined with a two-week period of increased flavonoid intake or chronic training as a runner. Full article
(This article belongs to the Special Issue Flavonoid Intake and Human Health)
Show Figures

Figure 1

Open AccessArticle
Associations between Flavonoid Intakes and Gut Microbiota in a Group of Adults with Cystic Fibrosis
Nutrients 2018, 10(9), 1264; https://doi.org/10.3390/nu10091264 - 07 Sep 2018
Cited by 3
Abstract
Dietary flavonoid intakes can influence gut microbiota (GM), which in turn can affect immune function and host metabolism, both vital considerations in cystic fibrosis (CF) management. In CF, GM may be altered and link to CF respiratory events. This study explored the relationship [...] Read more.
Dietary flavonoid intakes can influence gut microbiota (GM), which in turn can affect immune function and host metabolism, both vital considerations in cystic fibrosis (CF) management. In CF, GM may be altered and link to CF respiratory events. This study explored the relationship between flavonoid intakes and GM in free-living adults with CF. Associations between the overall GM variations (unweighted and weighted UniFrac distances between pyrosequencing results of bacterial 16-ss rDNA from frozen faecal samples of sixteen CF adults) and standardised dietary flavonoid intakes (a validated flavonoid-specific food frequency questionnaire) were analysed using adonis tests. Flavonoid intakes that were significant at a false discovery rate (FDR) < 0.3 were subjected to Spearman correlation tests with standardised bacterial relative abundances (FDR < 0.3). Gallocatechin intakes (p = 0.047, q = 0.285) were associated with unweighted UniFrac distances. Intakes of apigenin (p = 0.028, q = 0.227) and kaempferol (p = 0.029, q = 0.227), and % flavonoid intake as flavones (p = 0.013, q = 0.227) and flavonols (p = 0.016, q = 0.227) (both excluding contribution of tea) were associated with weighted UniFrac distances. Among these, gallocatechin correlated with the genus Actinomyces and family Actinomycetaceae (Actinobacteria). Gallocatechin correlated negatively with class Coriobacteriia (Actinobacteria). Intakes of some flavonoids may be associated with GM variations with potential consequences for metabolism, immune function, and inflammation, which are important in CF lung disease and co-morbidity management. Full article
(This article belongs to the Special Issue Flavonoid Intake and Human Health)
Show Figures

Figure 1

Open AccessArticle
Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
Nutrients 2018, 10(6), 713; https://doi.org/10.3390/nu10060713 - 02 Jun 2018
Cited by 18
Abstract
Ferulic acid is the most abundant phenolic compound found in vegetables and cereal grains. In vitro and animal studies have shown ferulic acid has anti-hyperlipidemic, anti-oxidative, and anti-inflammatory effects. The objective of this study is to investigate the effects of ferulic acid supplementation [...] Read more.
Ferulic acid is the most abundant phenolic compound found in vegetables and cereal grains. In vitro and animal studies have shown ferulic acid has anti-hyperlipidemic, anti-oxidative, and anti-inflammatory effects. The objective of this study is to investigate the effects of ferulic acid supplementation on lipid profiles, oxidative stress, and inflammatory status in hyperlipidemia. The study design is a randomized, double-blind, placebo-controlled trial. Subjects with hyperlipidemia were randomly divided into two groups. The treatment group (n = 24) was given ferulic acid (1000 mg daily) and the control group (n = 24) was provided with a placebo for six weeks. Lipid profiles, biomarkers of oxidative stress and inflammation were assessed before and after the intervention. Ferulic acid supplementation demonstrated a statistically significant decrease in total cholesterol (8.1%; p = 0.001), LDL-C (9.3%; p < 0.001), triglyceride (12.1%; p = 0.049), and increased HDL-C (4.3%; p = 0.045) compared with the placebo. Ferulic acid also significantly decreased the oxidative stress biomarker, MDA (24.5%; p < 0.001). Moreover, oxidized LDL-C was significantly decreased in the ferulic acid group (7.1%; p = 0.002) compared with the placebo group. In addition, ferulic acid supplementation demonstrated a statistically significant reduction in the inflammatory markers hs-CRP (32.66%; p < 0.001) and TNF-α (13.06%; p < 0.001). These data indicate ferulic acid supplementation can improve lipid profiles and oxidative stress, oxidized LDL-C, and inflammation in hyperlipidemic subjects. Therefore, ferulic acid has the potential to reduce cardiovascular disease risk factors. Full article
(This article belongs to the Special Issue Flavonoid Intake and Human Health)
Open AccessArticle
A Randomized, Double-Blinded, Placebo-Controlled Study to Compare the Safety and Efficacy of Low Dose Enhanced Wild Blueberry Powder and Wild Blueberry Extract (ThinkBlue™) in Maintenance of Episodic and Working Memory in Older Adults
Nutrients 2018, 10(6), 660; https://doi.org/10.3390/nu10060660 - 23 May 2018
Cited by 12
Abstract
Previous research has shown beneficial effects of polyphenol-rich diets in ameliorating cognitive decline in aging adults. Here, using a randomized, double blinded, placebo-controlled chronic intervention, we investigated the effect of two proprietary blueberry formulations on cognitive performance in older adults; a whole wild [...] Read more.
Previous research has shown beneficial effects of polyphenol-rich diets in ameliorating cognitive decline in aging adults. Here, using a randomized, double blinded, placebo-controlled chronic intervention, we investigated the effect of two proprietary blueberry formulations on cognitive performance in older adults; a whole wild blueberry powder at 500 mg (WBP500) and 1000 mg (WBP1000) and a purified extract at 100 mg (WBE111). One hundred and twenty-two older adults (65–80 years) were randomly allocated to a 6-month, daily regimen of either placebo or one of the three interventions. Participants were tested at baseline, 3, and 6 months on a battery of cognitive tasks targeting episodic memory, working memory and executive function, alongside mood and cardiovascular health parameters. Linear mixed model analysis found intervention to be a significant predictor of delayed word recognition on the Reys Auditory Verbal Learning Task (RAVLT), with simple contrast analysis revealing significantly better performance following WBE111 at 3 months. Similarly, performance on the Corsi Block task was predicted by treatment, with simple contrast analysis revealing a trend for better performance at 3 months following WBE111. Treatment also significantly predicted systolic blood pressure (SBP) with simple contrast analysis revealing lower SBP following intervention with WBE111 in comparison to placebo. These results indicate 3 months intervention with WBE111 can facilitate better episodic memory performance in an elderly population and reduce cardiovascular risk factors over 6 months. Full article
(This article belongs to the Special Issue Flavonoid Intake and Human Health)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
A Selective Role of Dietary Anthocyanins and Flavan-3-ols in Reducing the Risk of Type 2 Diabetes Mellitus: A Review of Recent Evidence
Nutrients 2019, 11(4), 841; https://doi.org/10.3390/nu11040841 - 13 Apr 2019
Cited by 1
Abstract
Type 2 diabetes mellitus (T2DM) is the most common form of DM and its prevalence is increasing worldwide. Because it is a progressive disease, prevention, early detection and disease course modification are possible. Diet plays a critical role in reducing T2DM risk. Therapeutic [...] Read more.
Type 2 diabetes mellitus (T2DM) is the most common form of DM and its prevalence is increasing worldwide. Because it is a progressive disease, prevention, early detection and disease course modification are possible. Diet plays a critical role in reducing T2DM risk. Therapeutic dietary approaches routinely recommend diets high in plant foods (i.e., vegetables, fruits, whole-grains). In addition to essential micronutrients and fiber, plant-based diets contain a wide-variety of polyphenols, specifically flavonoid compounds. Evidence suggests that flavonoids may confer specific benefits for T2DM risk reduction through pathways influencing glucose absorption and insulin sensitivity and/or secretion. The present review assesses the relationship between dietary flavonoids and diabetes risk reduction reviewing current epidemiology and clinical research. Collectively, the research indicates that certain flavonoids, explicitly anthocyanins and flavan-3-ols and foods rich in these compounds, may have an important role in dietary algorithms aimed to address diabetes risk factors and the development of T2DM. Full article
(This article belongs to the Special Issue Flavonoid Intake and Human Health)
Show Figures

Figure 1

Open AccessReview
In Vivo Rodent Models of Type 2 Diabetes and Their Usefulness for Evaluating Flavonoid Bioactivity
Nutrients 2019, 11(3), 530; https://doi.org/10.3390/nu11030530 - 28 Feb 2019
Cited by 6
Abstract
About 40% of the world’s population is overweight or obese and exist at risk of developing type 2 diabetes mellitus (T2D). Obesity is a leading pathogenic factor for developing insulin resistance (IR). It is well established that IR and a progressive decline in [...] Read more.
About 40% of the world’s population is overweight or obese and exist at risk of developing type 2 diabetes mellitus (T2D). Obesity is a leading pathogenic factor for developing insulin resistance (IR). It is well established that IR and a progressive decline in functional β-cell mass are hallmarks of developing T2D. In order to mitigate the global prevalence of T2D, we must carefully select the appropriate animal models to explore the cellular and molecular mechanisms of T2D, and to optimize novel therapeutics for their safe use in humans. Flavonoids, a group of polyphenols, have drawn great interest for their various health benefits, and have been identified in naturally occurring anti-diabetic compounds. Results from many clinical and animal studies demonstrate that dietary intake of flavonoids might prove helpful in preventing T2D. In this review, we discuss the currently available rodent animal models of T2D and analyze the advantages, the limitations of each T2D model, and highlight the potential anti-diabetic effects of flavonoids as well as the mechanisms of their actions. Full article
(This article belongs to the Special Issue Flavonoid Intake and Human Health)
Show Figures

Figure 1

Open AccessReview
The Effects of Flavonoids on Cardiovascular Health: A Review of Human Intervention Trials and Implications for Cerebrovascular Function
Nutrients 2018, 10(12), 1852; https://doi.org/10.3390/nu10121852 - 01 Dec 2018
Cited by 10
Abstract
Research has suggested a number of beneficial effects arising from the consumption of dietary flavonoids, found in foods such as cocoa, apples, tea, citrus fruits and berries on cardiovascular risk factors such as high blood pressure and endothelial dysfunction. These effects are thought [...] Read more.
Research has suggested a number of beneficial effects arising from the consumption of dietary flavonoids, found in foods such as cocoa, apples, tea, citrus fruits and berries on cardiovascular risk factors such as high blood pressure and endothelial dysfunction. These effects are thought to have a significant impact upon both vascular and cerebrovascular health, ultimately with the potential to prevent cardiovascular and potentially neurodegenerative disease with a vascular component, for example vascular dementia. This review explores the current evidence for the effects of flavonoid supplementation on human endothelial function and both peripheral and cerebral blood flow (CBF). Evidence presented includes their potential to reduce blood pressure in hypertensive individuals, as well as increasing peripheral blood perfusion and promoting CBF in both healthy and at-risk populations. However, there is great variation in the literature due to the heterogeneous nature of the randomised controlled trials conducted. As such, there is a clear need for further research and understanding within this area in order to maximise potential health benefits. Full article
(This article belongs to the Special Issue Flavonoid Intake and Human Health)
Show Figures

Figure 1

Open AccessReview
The Impact of Epicatechin on Human Cognition: The Role of Cerebral Blood Flow
Nutrients 2018, 10(8), 986; https://doi.org/10.3390/nu10080986 - 27 Jul 2018
Cited by 1
Abstract
Epicatechin is a monomeric flavanol found in food sources such as tea, apples, berries and cocoa. A number of large-scale epidemiological studies have demonstrated an association between the consumption of these foods and cognitive function, as well as improved blood flow. The aim [...] Read more.
Epicatechin is a monomeric flavanol found in food sources such as tea, apples, berries and cocoa. A number of large-scale epidemiological studies have demonstrated an association between the consumption of these foods and cognitive function, as well as improved blood flow. The aim of this review is to summarise the evidence from intervention studies to clarify the effect of epicatechin on cognition and to consider the role of increased cerebral blood flow as a mechanism for any effects. The effects of epicatechin as consumed in cocoa are, therefore, reviewed here as this represents the only dietary source where it is purported to be the major active component. Our main findings are that a) the positive modulation of tasks that involve memory, executive function and processing speed in older adults; b) the cognitive benefits are more often shown in studies containing more than 50 mg epicatechin/day; and c) all studies with a duration of 28 days or longer in populations >50 years old demonstrate a cognitive improvement. However, as highlighted by this review, it is not currently possible to attribute effects solely to epicatechin without consideration of synergies. In order to overcome this issue, further studies examining the cognitive effects of epicatechin in isolation are required. The role of cerebral blood flow also requires further investigation through simultaneous measurement alongside cognitive function. Full article
(This article belongs to the Special Issue Flavonoid Intake and Human Health)
Show Figures

Figure 1

Back to TopTop