Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Biochemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Wong, N.D. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat. Rev. Cardiol. 2014, 11, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Narain, J.P.; Garg, R.; Fric, A. Non-communicable diseases in the South-East Asia region: Burden, strategies and opportunities. Natl. Med. J. India 2011, 24, 280–287. [Google Scholar] [PubMed]
- Dhalla, N.S.; Temsah, R.M.; Netticadan, T. Role of oxidative stress in cardiovascular diseases. J. Hypertens. 2000, 18, 655–673. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, P. Oxidized LDL and coronary heart disease. Acta Cardiol. 2004, 59, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Black, P.H.; Garbutt, L.D. Stress, inflammation and cardiovascular disease. J. Psychosom. Res. 2002, 52, 1–23. [Google Scholar] [CrossRef]
- Lu, L.; Sun, R.; Liu, M.; Zheng, Y.; Zhang, P. The Inflammatory heart diseases: Causes, symptoms, and treatments. Cell Biochem. Biophys. 2015, 72, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, G.; Fang, J.; Mercado, C. Hyperlipidemia and medical expenditures by cardiovascular disease status in US adults. Med. Care 2017, 55, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Tarride, J.E.; Lim, M.; DesMeules, M.; Luo, W.; Burke, N.; O’Reilly, D.; Bowen, J.; Goeree, R. A review of the cost of cardiovascular disease. Can. J. Cardiol. 2009, 25, e195–e202. [Google Scholar] [CrossRef] [Green Version]
- Stewart, J.; Manmathan, G.; Wilkinson, P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc. Dis. 2017, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttar, H.S.; Li, T.; Ravi, N. Prevention of cardiovascular diseases: Role of exercise, dietary interventions, obesity and smoking cessation. Exp. Clin. Cardiol. 2005, 10, 229–249. [Google Scholar] [PubMed]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Zavoshy, R.; Noroozi, M.; Jahanihashemi, H. Effect of low calorie diet with rice bran oil on cardiovascular risk factors in hyperlipidemic patients. J. Res. Med. Sci. 2012, 17, 626–631. [Google Scholar] [PubMed]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic acid: Therapeutic potential through its antioxidant property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Basak, P.; Dutta, S.; Chowdhury, S.; Sil, P.C. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem. Toxicol. 2017, 103, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Adisakwattana, S. Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications. Nutrients 2017, 9, 163. [Google Scholar] [CrossRef] [PubMed]
- Sudheer, A.R.; Muthukumaran, S.; Kalpana, C.; Srinivasan, M.; Menon, V.P. Protective effect of ferulic acid on nicotine-induced DNA damage and cellular changes in cultured rat peripheral blood lymphocytes: A comparison with N-acetylcysteine. Toxicol. In Vitro 2007, 21, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaragoud, G.; Rajath, S.; Mahendra, V.; Kumar, G.S.; Krishna, A.G.; Kumar, G.S. Hypolipidemic mechanism of oryzanol components-ferulic acid and phytosterols. Biochem. Biophys. Res. Commun. 2016, 476, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.H.; Lee, Y.T.; Hsieh, H.S.; Hwang, D.F. Dietary caffeic acid, ferulic acid and coumaric acid supplements on cholesterol metabolism and antioxidant activity in rats. J. Food Drug Anal. 2009, 17, 123–132. [Google Scholar]
- Duxbury, M. An enzymatic clinical chemistry laboratory experiment incorporating an introduction to mathematical method comparison techniques. Biochem. Mol. Biol. Educ. 2004, 32, 246–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thongoun, P.; Pavadhgul, P.; Bumrungpert, A.; Satitvipawee, P.; Harjani, Y.; Kurilich, A. Effect of oat consumption on lipid profiles in hypercholesterolemic adults. J. Med. Assoc. Thai. 2013, 96, S25–S32. [Google Scholar] [PubMed]
- Kim, J.H.; Baik, H.W.; Yoon, Y.S.; Joung, H.J.; Park, J.S.; Park, S.J.; Jang, E.J.; Park, S.W.; Kim, S.J.; Kim, M.J.; et al. Measurement of antioxidant capacity using the biological antioxidant potential test and its role as a predictive marker of metabolic syndrome. Korean J. Intern. Med. 2014, 29, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, Y.; Kujiraoka, T.; Hakuno, D.; Masaki, N.; Tokuno, S.; Adachi, T. Elevation of derivatives of reactive oxygen metabolites elevated in young “disaster responders” in hypertension due to great east japan earthquake. Int. Heart J. 2016, 57, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.L.; Shi, Y.H.; Hao, G.; Li, W.; Le, G.W. Increasing oxidative stress with progressive hyperlipidemia in human: Relation between malondialdehyde and atherogenic index. J. Clin. Biochem. Nutr. 2008, 43, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Phuntuwate, W.; Suthisisang, C.; Koanantakul, B.; Chaloeiphap, P.; Mackness, B.; Mackness, M. Effect of fenofibrate therapy on paraoxonase1 status in patients with low HDL-C levels. Atherosclerosis 2008, 196, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, Y.; Hirayama, S.; Soda, S.; Seino, U.; Kon, M.; Ueno, T.; Idei, M.; Hanyu, O.; Tsuda, T.; Ohmura, H.; et al. Statin therapy reduces inflammatory markers in hypercholesterolemic patients with high baseline levels. J. Atheroscler. Thromb. 2010, 17, 722–729. [Google Scholar] [CrossRef] [PubMed]
- Bumrungpert, A.; Pavadhgul, P.; Kalpravidh, R.W. Camellia-oil enriched diet attenuates oxidative stress and inflammatory markers in hypercholesterolemic subjects. J. Med. Food 2016, 19, 895–898. [Google Scholar] [CrossRef] [PubMed]
- Naowaboot, J.; Piyabhan, P.; Munkong, N.; Parklak, W.; Pannangpetch, P. Ferulic acid improves lipid and glucose homeostasis in high-fat diet-induced obese mice. Clin. Exp. Pharmacol. Physiol. 2016, 43, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Monagas, M.; Andres-Lacueva, C.; Casas, R.; Urpí-Sardà, M.; Lamuela-Raventós, R.M.; Estruch, R. Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at high-risk of cardiovascular disease. Nutr. Metab. Cardiovasc. 2012, 22, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Frank, P.G.; Marcel, Y.L. Apolipoprotein AI: Structure–function relationships. J. Lipid. Res. 2000, 41, 853–872. [Google Scholar] [PubMed]
- Burke, M.F.; Khera, A.V.; Rader, D.J. Polyphenols and cholesterol efflux: Is coffee the next red wine? Circ. Res. 2010, 106, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Adorni, M.P.; Zimetti, F.; Billheimer, J.T. The roles of different pathways in the release of cholesterol from macrophages. J. Lipid. Res. 2007, 48, 2453–2462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Zhang, I.; Li, A.; Manson, J.E.; Sesso, H.D.; Wang, L.; Liu, S. Cocoa flavanol intake and biomarkers for cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. J. Nutr. 2016, 146, 2325–2333. [Google Scholar] [CrossRef] [PubMed]
- Asano, T.; Matsuzaki, H.; Iwata, N.; Xuan, M.; Kamiuchi, S.; Hibino, Y.; Sakamoto, T.; Okazaki, M. Protective effects of ferulic acid against chronic cerebral hypoperfusion-induced swallowing dysfunction in rats. Int. J. Mol. Sci. 2017, 18, 550. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.Y.; Do, G.M.; Cho, Y.Y.; Park, Y.B.; Jeon, S.M.; Choi, M.S. Anti-atherogenic property of ferulic acid in apolipoprotein E-deficient mice fed western diet: Comparison with clofibrate. Food Chem. Toxicol. 2010, 48, 2298–2303. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.J.; Zhang, Y.M.; Qi, J.P.; Liu, R.; Zhang, H.; He, L.C. Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway. Int. Immunopharmacol. 2015, 28, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.M.; Shen, J.D.; Xu, L.P.; Li, H.B.; Li, Y.C.; Yi, L.T. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int. Immunopharmacol. 2017, 45, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ternero, C.; Werner, C.M.; Nickel, A.G.; Herrera, M.D.; Motilva, M.J.; Böhm, M.; Alvarez de Sotomayor, M.; Laufs, U. Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice and in human mononuclear cells. J. Nutr. Biochem. 2017, 48, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Nhung, B.T.; Tuyen, L.D.; Linh, V.A.; Anh, N.D.; Nga, T.T.; Thuc, V.T.; Yui, K.; Ito, Y.; Nakashima, Y.; Yamamoto, S. Rice bran extract reduces the risk of atherosclerosis in post-menopausal vietnamese women. J. Nutr. Sci. Vitaminol. 2016, 62, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ternero, C.; Macia, A.; de Sotomayor, M.A.; Parrado, J.; Motilva, M.J.; Herrera, M.D. Bioavailability of the ferulic acid-derived phenolic compounds of a rice bran enzymatic extract and their activity against superoxide production. Food Funct. 2017, 8, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Vinson, J.A.; Cai, Y. Nuts, especially walnuts, have both antioxidant quantity and efficacy and exhibit significant potential health benefits. Food Funct. 2012, 3, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Placebo | Ferulic Acid | P1 | P2 | ||
---|---|---|---|---|---|---|
Baseline | 6 Week | Baseline | 6 Week | |||
Age (years) | 45.88 ± 7.84 | - | 48.71 ± 7.55 | - | 0.209 | |
Sex (n) | ||||||
-Male | 3 | 3 | 3 | 3 | ||
-Female | 21 | 21 | 21 | 21 | ||
Weight (kg) | 65.32 ± 19.25 | 65.24 ± 19.53 | 64.37 ± 15.87 | 64.34 ± 16.06 | 0.852 | 0.863 |
Body Mass Index (kg/m2) | 26.58 ± 6.20 | 26.54 ± 6.29 | 25.88 ± 5.31 | 25.86 ± 5.36 | 0.676 | 0.689 |
Waist circumference (cm) | 88.80 ± 11.48 | 88.52 ± 11.43 | 87.99 ± 10.54 | 87.72 ± 11.03 | 0.800 | 0.805 |
Body fat (%) | 33.84 ± 5.89 | 33.43 ± 6.31 | 34.95 ± 3.97 | 34.32 ± 4.18 | 0.445 | 0.567 |
Blood pressure (mm Hg) | ||||||
-Systolic | 123.04 ± 19.06 | 117.83 ± 14.25 | 123.17 ± 17.3 | 123.08 ± 15.36 | 0.981 | 0.226 |
-Diastolic | 80.38 ± 11.29 | 77.08 ± 12.53 | 80.29 ± 10.16 | 77.04 ± 10.09 | 0.979 | 0.990 |
Glucose (mg/dL) | 88.58 ± 7.76 | 85.63 ± 7.73 | 84.96 ± 8.01 | 82.79 ± 8.72 | 0.118 | 0.240 |
ALT (U/L) | 18.67 ± 4.80 | 18.08 ± 4.47 | 18.42 ± 5.39 | 18.67 ± 5.50 | 0.866 | 0.689 |
AST (U/L) | 22.00 ± 6.65 | 21.67 ± 6.81 | 21.46 ± 5.29 | 20.17 ± 4.99 | 0.756 | 0.389 |
Creatinine (mg/dL) | 0.77 ± 0.11 | 0.78 ± 0.12 | 0.75 ± 0.13 | 0.74 ± 0.13 | 0.491 | 0.330 |
Dietary Assessment | Placebo | Ferulic Acid | P1 | P2 | ||
---|---|---|---|---|---|---|
Baseline | 6 Week | Baseline | 6 Week | |||
Energy (kcal/day) | 1914 ± 476 | 1878 ± 399 | 1854 ± 519 | 1866 ± 503 | 0.704 | 0.931 |
Carbohydrate (% of energy) | 56.74 ± 9.53 | 55.87 ± 7.67 | 55.41 ± 9.71 | 54.77 ± 7.90 | 0.665 | 0.659 |
Protein (% of energy) | 15.17 ± 4.79 | 14.61 ± 4.53 | 16.37 ± 5.20 | 16.50 ± 5.11 | 0.455 | 0.223 |
Fat (% of energy) | 28.09 ± 6.82 | 29.52 ± 5.62 | 28.22 ± 6.70 | 28.73 ± 4.79 | 0.949 | 0.639 |
Cholesterol (mg/day) | 335.60 ± 126.03 | 351.47 ± 134.98 | 356.98 ± 110.60 | 330.54 ± 97.86 | 0.564 | 0.572 |
Fiber (g/day) | 10.44 ± 6.14 | 10.17 ± 6.74 | 9.27 ± 6.29 | 10.22 ± 7.99 | 0.558 | 0.981 |
Biomarkers | Placebo | Ferulic Acid | pb | ||||
---|---|---|---|---|---|---|---|
Baseline a | 6 Week | Change (%) | Baseline a | 6 Week | Change (%) | ||
Lipid profiles | |||||||
TC (mg/dL) | 250.83 ± 32.16 | 245 ± 34.4 | −2.17 ± 6.71 | 254.35 ± 33.65 | 233 ± 26.26 | −8.07 ± 4.56 | 0.001 |
TG (mg/dL) | 131.5 ± 72.04 | 122.04 ± 56.47 | −0.41 ± 27.85 | 136.96 ± 59.45 | 120.22 ± 54.02 | −12.12 ± 7.95 | 0.049 |
LDL-C (mg/dL) | 167.17 ± 27.61 | 164 ± 28.72 | −1.69 ± 6.72 | 172.74 ± 30.17 | 155.91 ± 23.73 | −9.32 ± 4.82 | <0.001 |
HDL-C (mg/dL) | 55.58 ± 13.07 | 54.71 ± 12.76 | −0.94 ± 9.13 | 51.52 ± 8.82 | 53.39 ± 7.95 | 4.32 ± 8.96 | 0.045 |
Oxidative stress markers | |||||||
BAP (μmol/L) | 2896.33 ± 256.25 | 2802.21 ± 222.57 | −2.75 ± 9.32 | 2930.36 ± 345.14 | 3266.95 ± 386.57 | 11.83 ± 9.5 | <0.001 |
d-ROMs (CARR U) | 323.25 ± 47.9 | 332.88 ± 56.13 | 2.98 ± 8.97 | 358.32 ± 75.91 | 315.45 ± 63.98 | −11.72 ± 5.48 | <0.001 |
MDA (nmol/L) | 1092.29 ± 228.41 | 1015.67 ± 201.56 | −6.62 ± 7.3 | 1155.5 ± 229.52 | 862.45 ± 166.96 | −24.46 ± 10.8 | <0.001 |
Oxidized LDL-C (U/L) | 57.48 ± 5.43 | 56.12 ± 5.47 | −2.22 ± 5.93 | 59.23 ± 3.69 | 54.98 ± 2.97 | −7.05 ± 4.37 | 0.002 |
Inflammatory markers | |||||||
hs-CRP (mg/L) | 2.74 ± 1.96 | 3.27 ± 2.48 | 25.18 ± 54.89 | 2.94 ± 1.85 | 1.82 ± 0.82 | −32.66 ± 20.91 | <0.001 |
TNF-α (pg/mL) | 42.92 ± 24.62 | 46.95 ± 24.63 | 12.75 ± 15.28 | 44.22 ± 21.14 | 38.95 ± 20.09 | −13.06 ± 6.92 | <0.001 |
IL-6 (pg/mL) | ND | ND | ND | ND | ND | ND | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bumrungpert, A.; Lilitchan, S.; Tuntipopipat, S.; Tirawanchai, N.; Komindr, S. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2018, 10, 713. https://doi.org/10.3390/nu10060713
Bumrungpert A, Lilitchan S, Tuntipopipat S, Tirawanchai N, Komindr S. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 2018; 10(6):713. https://doi.org/10.3390/nu10060713
Chicago/Turabian StyleBumrungpert, Akkarach, Supathra Lilitchan, Siriporn Tuntipopipat, Nednapis Tirawanchai, and Surat Komindr. 2018. "Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial" Nutrients 10, no. 6: 713. https://doi.org/10.3390/nu10060713