molecules-logo

Journal Browser

Journal Browser

Discovery of New Natural Derived Compounds and Mechanisms for Chronic Diseases Therapy

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 30 September 2025 | Viewed by 196

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor Assistant
Centro de Investigación en Ingeniería de Materiales-CIIMAT, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile
Interests: cancer therapies; natural products; biomolecular recognition; coordination chemistry; targeted drug delivery

Special Issue Information

Dear Colleagues,

Promising and novel cancer therapies have been investigated in natural compounds, their structural analogs, and semisynthetic derivatives, revealing a remarkable diversity in their chemical properties. Moreover, the modular structure of these products with natural frameworks enhances their potential for greater safety and effectiveness.

Among the many natural molecular systems are flavonoids, porphyrins, sugars, and mimetic peptides, as well as their metallo-derivatives, which have provided platforms for the specific recognition and stabilization of biomolecules. This has opened new possibilities in biomedicine to avoid unwanted effects, pharmacological resistance, and to enhance the bioavailability of promising therapeutic agents. Coordination chemistry and self-assembly have been among the most versatile synthetic tools for developing new molecular and supramolecular architectures that target elusive biological targets associated with degenerative or chronic disorders. The ability of these systems to organize themselves in a structured and functional way is crucial for their specific interactions with biomolecules, enabling the development of innovative devices such as biomolecular sensors, controlled drug delivery systems, and platforms for personalized therapies.

Prof. Dr. Eduardo Sobarzo-Sánchez
Guest Editor

Dr. Marianela Saldías
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cancer therapies
  • natural products
  • biomolecular recognition
  • coordination chemistry
  • targeted drug delivery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

92 pages, 5760 KiB  
Review
Stilbenes Against Alzheimer’s Disease: A Comprehensive Review of Preclinical Studies of Natural and Synthetic Compounds Combined with the Contributions of Developed Nanodrug Delivery Systems
by Esra Küpeli Akkol, Gökçe Şeker Karatoprak, Berrak Dumlupınar, Özlem Bahadır Acıkara, Reyhan Arıcı, Çiğdem Yücel, Leyli Can Aynal and Eduardo Sobarzo Sánchez
Molecules 2025, 30(9), 1982; https://doi.org/10.3390/molecules30091982 - 29 Apr 2025
Abstract
This review covers preclinical studies of stilbene derivative compounds (both natural and synthetic) with potential preventive and therapeutic effects against Alzheimer’s disease (AD). AD is a worldwide neurodegenerative disease characterized by the destruction of nerve cells in the brain and the loss of [...] Read more.
This review covers preclinical studies of stilbene derivative compounds (both natural and synthetic) with potential preventive and therapeutic effects against Alzheimer’s disease (AD). AD is a worldwide neurodegenerative disease characterized by the destruction of nerve cells in the brain and the loss of cognitive function due to aging. Stilbenes are a unique class of natural phenolic compounds distinguished by a C6-C2-C6 (1,2-diphenylethylene) structure and two aromatic rings connected by an ethylene bridge. Stilbenes’ distinct features make them an intriguing subject for pharmacological research and development. Several preclinical studies have suggested that stilbenes may have neuroprotective effects by reducing Aβ generation and oligomerization, enhancing Aβ clearance, and regulating tau neuropathology through the prevention of aberrant tau phosphorylation and aggregation, as well as scavenging reactive oxygen species. Synthetic stilbene derivatives also target multiple pathways involved in neuroprotection and have demonstrated promising biological activity in vitro. However, some properties of stilbenes, such as sensitivity to physiological conditions, low solubility, poor permeability, instability, and low bioavailability, limit their usefulness in clinical applications. To address this issue, current investigations have developed new drug delivery systems based on stilbene derivative molecules. This review aims to shed light on the development of next-generation treatment strategies by examining in detail the role of stilbenes in Alzheimer’s pathophysiology and their therapeutic potential. Full article
Back to TopTop