molecules-logo

Journal Browser

Journal Browser

Special Issue "Food Chemistry in Asia"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Food Chemistry".

Deadline for manuscript submissions: 30 November 2022 | Viewed by 2000

Special Issue Editors

Dr. Junhu Cheng
E-Mail Website
Guest Editor
Lab of Innovative Food Physical Processing Technology, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
Interests: innovative food physical processing technologies; microwave-assisted technology; IR processing technology; spectral and imaging technologies; multispectral for food quality and safety; biological functional materials in antibacterial applications
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Shigeru Itoh
E-Mail Website
Guest Editor
National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192, Japan
Interests: essential oils; medicinal plants; extraction and sterilization using instantaneous high pressure
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Young-Suk Kim
E-Mail Website
Guest Editor
Department of Food Science and Biotechnology, Ewha Womans University, Seoul 03760, Korea
Interests: flavor chemistry; flavor analysis; metabolomics; thermal reaction

Special Issue Information

Dear Colleagues,

It is our pleasure to announce a new Special Issue entitled “ Food Chemistry in Asia ”. This Special Issue will present a high-quality collection comprising work from scientists in Asian countries, as well as contributions from other countries concerning advances in food chemistry in Asia (both original research articles and comprehensive review papers are welcome).

This Special Issue will discuss new knowledge or cutting-edge developments in the food chemistry research field, with the aim of expanding the current body of knowledge. This issue is intended as a forum for the exchange of research findings and innovative ideas in the field.

Dr. Junhu Cheng
Prof. Dr. Shigeru Itoh
Prof. Dr. Young-Suk Kim
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2300 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Marker-Independent Food Identification Enabled by Combing Machine Learning Algorithms with Comprehensive GC × GC/TOF-MS
Molecules 2022, 27(19), 6237; https://doi.org/10.3390/molecules27196237 - 22 Sep 2022
Viewed by 206
Abstract
Reliable methods are always greatly desired for the practice of food inspection. Currently, most food inspection techniques are mainly dependent on the identification of special components, which neglect the combination effects of different components and often lead to biased results. By using Chinese [...] Read more.
Reliable methods are always greatly desired for the practice of food inspection. Currently, most food inspection techniques are mainly dependent on the identification of special components, which neglect the combination effects of different components and often lead to biased results. By using Chinese liquors as an example, we developed a new food identification method based on the combination of machine learning with GC × GC/TOF-MS. The sample preparation methods SPME and LLE were compared and optimized for producing repeatable and high-quality data. Then, two machine learning algorithms were tried, and the support vector machine (SVM) algorithm was finally chosen for its better performance. It is shown that the method performs well in identifying both the geographical origins and flavor types of Chinese liquors, with high accuracies of 91.86% and 97.67%, respectively. It is also reasonable to propose that combining machine learning with advanced chromatography could be used for other foods with complex components. Full article
(This article belongs to the Special Issue Food Chemistry in Asia)
Show Figures

Figure 1

Article
Functional Annotation of Lactiplantibacillus plantarum 13-3 as a Potential Starter Probiotic Involved in the Food Safety of Fermented Products
Molecules 2022, 27(17), 5399; https://doi.org/10.3390/molecules27175399 - 24 Aug 2022
Viewed by 368
Abstract
The important role of Lactiplantibacillus plantarum strains in improving the human mucosal and systemic immunity, preventing non-steroidal anti-provocative drug-induced reduction in T-regulatory cells, and as probiotic starter cultures in food processing has motivated in-depth molecular and genomic research of these strains. The current [...] Read more.
The important role of Lactiplantibacillus plantarum strains in improving the human mucosal and systemic immunity, preventing non-steroidal anti-provocative drug-induced reduction in T-regulatory cells, and as probiotic starter cultures in food processing has motivated in-depth molecular and genomic research of these strains. The current study, building on this research concept, reveals the importance of Lactiplantibacillus plantarum 13-3 as a potential probiotic and bacteriocin-producing strain that helps in improving the condition of the human digestive system and thus enhances the immunity of the living beings via various extracellular proteins and exopolysaccharides. We have assessed the stability and quality of the L. plantarum 13-3 genome through de novo assembly and annotation through FAST-QC and RAST, respectively. The probiotic-producing components, secondary metabolites, phage prediction sites, pathogenicity and carbohydrate-producing enzymes in the genome of L. plantarum 13-3 have also been analyzed computationally. This study reveals that L. plantarum 13-3 is nonpathogenic with 218 subsystems and 32,918 qualities and five classes of sugars with several important functions. Two phage hit sites have been identified in the strain. Cyclic lactone autoinducer, terpenes, T3PKS, and RiPP-like gene clusters have also been identified in the strain evidencing its role in food processing. Combined, the non-pathogenicity and the food-processing ability of this strain have rendered this strain industrially important. The subsystem and qualities characterization provides a starting point to investigate the strain’s healthcare-related applications as well. Full article
(This article belongs to the Special Issue Food Chemistry in Asia)
Show Figures

Figure 1

Article
Gypensapogenin I Ameliorates Isoproterenol (ISO)-Induced Myocardial Damage through Regulating the TLR4/NF-κB/NLRP3 Pathway
Molecules 2022, 27(16), 5298; https://doi.org/10.3390/molecules27165298 - 19 Aug 2022
Viewed by 511
Abstract
Myocardial fibrosis (MF) is a common pathological feature of many heart diseases and seriously threatens the normal activity of the heart. Jiaogulan (Gynostemma pentaphyllum) tea is a functional food that is commercially available worldwide. Gypensapogenin I (Gyp I), which is a [...] Read more.
Myocardial fibrosis (MF) is a common pathological feature of many heart diseases and seriously threatens the normal activity of the heart. Jiaogulan (Gynostemma pentaphyllum) tea is a functional food that is commercially available worldwide. Gypensapogenin I (Gyp I), which is a novel dammarane-type saponin, was obtained from the hydrolysates of total gypenosides. It has been reported to exert a beneficial anti-inflammatory effect. In our study, we attempted to investigate the efficiency and possible molecular mechanism of Gyp I in cardiac injury treatment induced by ISO. In vitro, Gyp I was found to increase the survival rate of H9c2 cells and inhibit apoptosis. Combined with molecular docking and Western blot analysis, Gyp I was confirmed to regulate the TLR4/NF-κB/NLRP3 signaling pathway. In vivo, C57BL6 mice were subcutaneously injected with 10 mg/kg ISO to induce heart failure. Mice were given a gavage of Gyp I (10, 20, or 40 mg/kg/d for three weeks). Pathological alterations, fibrosis-, inflammation-, and apoptosis-related molecules were examined. By means of cardiac function detection, biochemical index analysis, QRT-PCR monitoring, histopathological staining, immunohistochemistry, and Western blot analysis, it was elucidated that Gyp I could improve cardiac dysfunction, alleviate collagen deposition, and reduce myocardial fibrosis (MF). In summary, we reported for the first time that Gyp I showed good myocardial protective activity in vitro and in vivo, and its mechanism was related to the TLR4/NF-κB/NLRP3 signaling pathway. Full article
(This article belongs to the Special Issue Food Chemistry in Asia)
Show Figures

Graphical abstract

Article
Comparative Analysis of Antioxidant Compounds and Antioxidative Properties of Thai Indigenous Rice: Effects of Rice Variety and Processing Condition
Molecules 2022, 27(16), 5180; https://doi.org/10.3390/molecules27165180 - 14 Aug 2022
Viewed by 407
Abstract
Indigenous southern Thai non-glutinous rice varieties Kaab Dum, Khai Mod Rin, Yar Ko, Yoom Noon, and Look Lai made under four different processing conditions, white rice, brown rice, germinated brown rice, and rice grass, were assessed for antioxidant components and in vitro antioxidative [...] Read more.
Indigenous southern Thai non-glutinous rice varieties Kaab Dum, Khai Mod Rin, Yar Ko, Yoom Noon, and Look Lai made under four different processing conditions, white rice, brown rice, germinated brown rice, and rice grass, were assessed for antioxidant components and in vitro antioxidative activities. According to the findings, rice’s antioxidant components and antioxidant activity were considerably impacted by both variety and processing. High levels of total extractable phenolic compounds (164–314 mg gallic acid equivalent (GAE)/kg, dry weight (dw)) and carotenoid (0.92–8.65 mg/100 g, dw) were found in all rice varieties, especially in rice grass and germinated brown rice, indicating that milling to generate white rice had an adverse effect on those components. Additionally, after germination, a higher γ-oryzanol concentration (9–14 mg/100 g, dw) was found. All rice varieties had higher ascorbic acid, phenolic compound, and carotenoid contents after sprouting. Overall, Yoom Noon rice grass had the highest total extractable phenolic content (p < 0.05). The rice grass from Yoom Noon/Look Lai/Kaab Dum had the highest ascorbic acid content (p < 0.05). The total carotenoid concentration of Look Lai rice grass was the highest, and Yoom Noon’s germinated brown rice had the highest γ-oryzanol content (p < 0.05). All rice varieties’ aqueous extracts had remarkable ABTS free radical scavenging activity, with Khai Mod Rin reaching the highest maximum value of 42.56 mmol Trolox equivalent/kg dw. Other antioxidant mechanisms, however, were quite low. Compared to germinated brown rice, brown rice, and white rice, rice grass often tended to have stronger antioxidant activity. Yar Ko rice grass was found to have the highest DPPH free radical scavenging activity (3.8 mmol Trolox equivalent/kg dw) and ferric reducing antioxidant power (FRAP) (4.6 mmol Trolox equivalent/kg dw) (p < 0.05). Khai Mod Rice grass had the most pronounced metal chelation activity (1.14 mmol EDTA equivalent/kg dw) (p < 0.05). The rice variety and processing conditions, therefore, influenced the antioxidant compounds and antioxidative properties of Thai indigenous rice. The results can be used as a guide to select the optimal rice variety and primary processing in order to satisfy the needs of farmers who want to produce rice as a functional ingredient and to promote the consumption of indigenous rice by health-conscious consumers. Full article
(This article belongs to the Special Issue Food Chemistry in Asia)
Show Figures

Figure 1

Review

Jump to: Research

Review
Comprehensive Analysis of the Structure and Allergenicity Changes of Seafood Allergens Induced by Non-Thermal Processing: A Review
Molecules 2022, 27(18), 5857; https://doi.org/10.3390/molecules27185857 - 09 Sep 2022
Viewed by 257
Abstract
Seafood allergy, mainly induced by fish, shrimp, crab, and shellfish, is a food safety problem worldwide. The non-thermal processing technology provides a new method in reducing seafood allergenicity. Based on the structural and antigenic properties of allergenic proteins, this review introduces current methods [...] Read more.
Seafood allergy, mainly induced by fish, shrimp, crab, and shellfish, is a food safety problem worldwide. The non-thermal processing technology provides a new method in reducing seafood allergenicity. Based on the structural and antigenic properties of allergenic proteins, this review introduces current methods for a comprehensive analysis of the allergenicity changes of seafood allergens induced by non-thermal processing. The IgE-binding capacities/immunoreactivity of seafood allergens are reduced by the loss of conformation during non-thermal processing. Concretely, the destruction of native structure includes degradation, aggregation, uncoiling, unfolding, folding, and exposure, leading to masking of the epitopes. Moreover, most studies rely on IgE-mediated assays to evaluate the allergenic potential of seafood protein. This is not convincing enough to assess the effect of novel food processing techniques. Thus, further studies must be conducted with functional assays, in vivo assays, animal trials, simulated digestion, and intestinal microflora to strengthen the evidence. It also enables us to better identify the effects of non-thermal processing treatment, which would help further analyze its mechanism. Full article
(This article belongs to the Special Issue Food Chemistry in Asia)
Show Figures

Figure 1

Back to TopTop