Non-Destructive Hyperspectral Imaging for Rapid Determination of Catalase Activity and Ageing Visualization of Wheat Stored for Different Durations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Changes in Wheat CAT Activity during Ageing
2.2. Data Preprocessing
2.3. Prediction of CAT Activity Based on the Full Band
2.4. Prediction of CAT Activity Based on Characteristic Wavelength
2.5. Classification of Different Years of Wheat Based on CAT Activity
2.6. Visualization of Chemical Information
3. Materials and Methods
3.1. Sample Processing
3.2. Determination of CAT
3.3. Hyperspectral Image Acquisition and Correction
3.4. Data Analysis
3.5. Visualization of Chemical Information
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, P.D.; Yang, Y.Y.; Gong, D.; Yu, L.R.; Han, Y.; Zong, Y.Y.; Li, Y.C.; Prusky, O.; Bi, Y. Chitooligosaccharide Maintained Cell Membrane Integrity by Regulating Reactive Oxygen Species Homeostasis at Wounds of Potato Tubers during Healing. Antioxidants 2022, 11, 1791. [Google Scholar] [CrossRef] [PubMed]
- Mhamdi, A.; Noctor, G.; Baker, A. Plant catalases: Peroxisomal redox guardians. Arch. Biochem. Biophys. 2012, 525, 181–194. [Google Scholar] [CrossRef] [PubMed]
- Gang, C.; Guangzhi, W.; Xiu-li, L.; Qi-bai, Z.; Ping, S.; Zhong, W.J.T.S. Technology, Effects of Various Treatments on Germination and Catalase Activity of Tobacco Seeds. Tob. Sci. Technol. 2001, 25–29. [Google Scholar]
- Shim, I.S.; Momose, Y.; Yamamoto, A.; Kim, D.W.; Usui, K.J.P.G.R. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul. 2004, 39, 285–292. [Google Scholar] [CrossRef]
- Xu, Y.; Crouch, J.H. Marker-assisted selection in plant breeding: From publications to practice. Crop. Sci. 2008, 48, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Saheri, F.; Barzin, G.; Pishkar, L.; Boojar, M.M.A.; Babaeekhou, L.J.B. Foliar spray of salicylic acid induces physiological and biochemical changes in purslane (Portulaca oleracea L.) under drought stress. Biologia 2020, 75, 2201. [Google Scholar] [CrossRef]
- Matsukura, U.; Kaneko, S.; Momma, M. Method for Measuring the Freshness of Individual Rice Grains by Means of a Color Reaction of Catalase Activity. J. Jpn. Soc. Food Sci. Technol. Nippon. Shokuhin Kagaku Kogaku Kaishi 2000, 47, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Kong, W.; Zhao, Y.; Liu, F.; He, Y.; Tian, T.; Zhou, W. Fast Analysis of Superoxide Dismutase (SOD) Activity in Barley Leaves Using Visible and Near Infrared Spectroscopy. Sensors 2012, 12, 10871–10880. [Google Scholar] [CrossRef]
- Lopes, L.C.; Brandão, I.V.; Sánchez, O.C.; Franceschi, E.; Borges, G.; Dariva, C.; Fricks, A.T. Horseradish peroxidase biocatalytic reaction monitoring using Near-Infrared (NIR) Spectroscopy. Process Biochem. 2018, 71, 127–133. [Google Scholar] [CrossRef]
- Kong, W.; Liu, F.; Zhang, C.; Bao, Y.; Yu, J.; He, Y. Fast detection of peroxidase (POD) activity in tomato leaves which infected with Botrytis cinerea using hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 498–502. [Google Scholar] [CrossRef]
- Xing, J.; Symons, S.; Shahin, M.; Hatcher, D. Detection of sprout damage in Canada Western Red Spring wheat with multiple wavebands using visible/near-infrared hyperspectral imaging. Biosyst. Eng. 2010, 106, 188–194. [Google Scholar] [CrossRef]
- Fox, G.; Manley, M. Applications of single kernel conventional and hyperspectral imaging near infrared spectroscopy in cereals. J. Sci. Food Agric. 2013, 94, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Sun, D.-W.; Pu, H. Classical and emerging non-destructive technologies for safety and quality evaluation of cereals: A review of recent applications. Trends Food Sci. Technol. 2019, 91, 598–608. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, A.; Kim, B.; Lim, J. Classification of Rice and Starch Flours by Using Multiple Hyperspectral Imaging Systems and Chemometric Methods. Appl. Sci. 2020, 10, 6724. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, H.; Rao, Z.; Ji, H. Non-destructive identification of slightly sprouted wheat kernels using hyperspectral data on both sides of wheat kernels. Biosyst. Eng. 2020, 200, 188–199. [Google Scholar] [CrossRef]
- Elmasry, G.; Kamruzzaman, M.; Sun, D.-W.; Allen, P. Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 999–1023. [Google Scholar] [CrossRef]
- Huang, H.; Liu, L.; Ngadi, M.O. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety. Sensors 2014, 14, 7248–7276. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhang, F.; Ning, J.; Liu, X.; Zhang, Z.; Yang, S. Predicting the anthocyanin content of wine grapes by NIR hyperspectral imaging. Food Chem. 2015, 172, 788–793. [Google Scholar] [CrossRef]
- Vejarano, R.; Siche, R.; Tesfaye, W. Evaluation of biological contaminants in foods by hyperspectral imaging: A review. Int. J. Food Prop. 2017, 20, 1264–1297. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Sun, D.-W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review - Part II: Applications. Innov. Food Sci. Emerg. Technol. 2013, 19, 15–28. [Google Scholar] [CrossRef]
- Ravikanth, L.; Jayas, D.S.; White, N.D.G.; Fields, P.G.; Sun, D.-W. Extraction of Spectral Information from Hyperspectral Data and Application of Hyperspectral Imaging for Food and Agricultural Products. Food Bioprocess Technol. 2016, 10, 1–33. [Google Scholar] [CrossRef]
- Tschannerl, J.; Ren, J.; Jack, F.; Krause, J.; Zhao, H.; Huang, W.; Marshall, S. Potential of UV and SWIR hyperspectral imaging for determination of levels of phenolic flavour compounds in peated barley malt. Food Chem. 2018, 270, 105–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, J.-H.; Sun, D.-W.; Wei, Q. Enhancing Visible and Near-Infrared Hyperspectral Imaging Prediction of TVB-N Level for Fish Fillet Freshness Evaluation by Filtering Optimal Variables. Food Anal. Methods 2016, 10, 1888–1898. [Google Scholar] [CrossRef]
- Crichton, S.O.; Kirchner, S.M.; Porley, V.; Retz, S.; von Gersdorff, G.; Hensel, O.; Weygandt, M.; Sturm, B. Classification of organic beef freshness using VNIR hyperspectral imaging. Meat Sci. 2017, 129, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Khojastehnazhand, M.; Khoshtaghaza, M.H.; Mojaradi, B.; Rezaei, M.; Goodarzi, M.; Saeys, W. Comparison of Visible-Near Infrared and Short Wave Infrared hyperspectral imaging for the evaluation of rainbow trout freshness. Food Res. Int. 2014, 56, 25–34. [Google Scholar] [CrossRef]
- Yang, N.; He, D.; Lu, A.; Ren, N.; Wang, J. Detection of the Freshness State of Cooked Beef During Storage Using Hyperspectral Imaging. Appl. Spectrosc. 2017, 71, 2286–2301. [Google Scholar] [CrossRef]
- Wang, H.; Chen, J.; Lin, H.; Yuan, D. Research on effectiveness of hyperspectral data on identifying rice of different genotypes. Remote Sens. Lett. 2010, 1, 223–229. [Google Scholar] [CrossRef]
- Zhou, W.H.; Zhang, J.J.; Zou, M.M.; Liu, X.Q.; Du, X.L.; Wang, Q.; Liu, Y.Y.; Liu, Y.; Li, J.L. Prediction of cadmium concentration in brown rice before harvest by hyperspectral remote sensing. Environ. Sci. Pollut. Res. 2019, 26, 1848–1856. [Google Scholar] [CrossRef] [PubMed]
- Barnaby, J.Y.; Huggins, T.D.; Lee, H.; McClung, A.M.; Pinson, S.R.M.; Oh, M.; Bauchan, G.R.; Tarpley, L.; Lee, K.; Kim, M.S.; et al. Vis/NIR hyperspectral imaging distinguishes sub-population, production environment, and physicochemical grain properties in rice. Sci. Rep. 2020, 10, 9284. [Google Scholar] [CrossRef]
- Kandpal, L.M.; Lee, S.; Kim, M.S.; Bae, H.; Cho, B.K. Short wave infrared (SWIR) hyperspectral imaging technique for examination of aflatoxin B-1 (AFB(1)) on corn kernels. Food Control 2015, 51, 171–176. [Google Scholar] [CrossRef]
- Wang, L.; Sun, D.-W.; Pu, H.; Zhu, Z. Application of Hyperspectral Imaging to Discriminate the Variety of Maize Seeds. Food Anal. Methods 2015, 9, 225–234. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, W. Moisture content detection of maize seed based on visible/near-infrared and near-infrared hyperspectral imaging technology. Int. J. Food Sci. Technol. 2019, 55, 631–640. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Lv, Y.J.; Liu, H.; Wei, Y.G.; Zhang, J.W.; An, D.; Wu, J.W. Identification of maize haploid kernels based on hyperspectral imaging technology. Comput. Electron. Agric. 2018, 153, 188–195. [Google Scholar] [CrossRef]
- Shahin, M.A.; Symons, S.J. Detection of Fusarium damaged kernels in Canada Western Red Spring wheat using visible/near-infrared hyperspectral imaging and principal component analysis. Comput. Electron. Agric. 2011, 75, 107–112. [Google Scholar] [CrossRef]
- Singh, C.B.; Jayas, D.S.; Paliwal, J.; White, N.D.G. Detection of midge-damaged wheat kernels using short-wave near-infrared hyperspectral and digital colour imaging. Biosyst. Eng. 2010, 105, 380–387. [Google Scholar] [CrossRef]
- Barbedo, J.G.; Guarienti, E.M.; Tibola, C.S. Detection of sprout damage in wheat kernels using NIR hyperspectral imaging. Biosyst. Eng. 2018, 175, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ji, H. Identification of wheat grain in different states based on hyperspectral imaging technology. Spectrosc. Lett. 2019, 52, 356–366. [Google Scholar] [CrossRef]
- Zhang, L.; Rao, Z.; Ji, H. NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Study the Residues of Different Concentrations of Omethoate on Wheat Grain Surface. Sensors 2019, 19, 3147. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, I.; Panigrahi, S.S.; Ravikanth, L.; Singh, C.B. Potential of Near-Infrared (NIR) Spectroscopy and Hyperspectral Imaging for Quality and Safety Assessment of Fruits: An Overview. Food Anal. Methods 2019, 12, 2438–2458. [Google Scholar] [CrossRef]
- Jia, F.; Wang, J.-S. The relationship between the catalase activity and physicological and quality changes of stored wheat. BioChemistry Indian J. 2015, 9, 179–185. [Google Scholar]
- Barlocco, N.; Vadell, A.; Ballesteros, F.; Galietta, G.; Cozzolino, D. Predicting intramuscular fat, moisture and Warner-Bratzler shear force in pork muscle using near infrared reflectance spectroscopy. Anim. Sci. 2006, 82, 111–116. [Google Scholar] [CrossRef]
- Diwu, P.Y.; Bian, X.H.; Wang, Z.F.; Liu, W. Study on the Selection of Spectral Preprocessing Methods. Spectrosc. Spectr. Anal. 2019, 39, 2800–2806. [Google Scholar]
- Zheng, X.; Lü, G.; Du, G.; Yue, X.; Lü, X.; Tang, J.; Mo, J. Raman spectroscopy for rapid and inexpensive diagnosis of echinococcosis using the adaptive iteratively reweighted penalized least squares-Kennard-stone-back propagation neural network. Laser Phys. Lett. 2018, 15, 085702. [Google Scholar] [CrossRef]
- Yu, H.; Liu, H.; Wang, N.; Yang, Y.; Shi, A.; Liu, L.; Hu, H.; Mzimbiri, R.I.; Wang, Q. Rapid and visual measurement of fat content in peanuts by using the hyperspectral imaging technique with chemometrics. Anal. Methods 2016, 8, 7482–7492. [Google Scholar] [CrossRef]
- Dai, Q.; Cheng, J.-H.; Sun, D.-W.; Zhu, Z.; Pu, H. Prediction of total volatile basic nitrogen contents using wavelet features from visible/near-infrared hyperspectral images of prawn (Metapenaeus ensis). Food Chem. 2016, 197, 257–265. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Pontes, M.J.C.; Galvão, R.K.H.; Araújo, M.C.U.; Moreira, P.N.T.; Neto, O.D.P.; José, G.E.; Saldanha, T.C.B. The successive projections algorithm for spectral variable selection in classification problems. Chemom. Intell. Lab. Syst. 2005, 78, 11–18. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, Y.; Yang, Y.; Yu, P.; Huang, Y. Huang, Enhancing the stability of immobilized catalase on activated carbon with gelatin encapsulation. J. Appl. Polym. Sci. 2013, 130, 1498–1502. [Google Scholar] [CrossRef]
- Huo, M.L.; Zhao, L.I.; Wang, T.; Zong, W.S.; Liu, R.T. Binding mechanism of maltol with catalase investigated by spectroscopy, molecular docking, and enzyme activity assay. J. Mol. Recognit. 2020, 33, 2822. [Google Scholar] [CrossRef]
- Gong, H.-L.; Chen, Q.-Q. Exogenous Sucrose Protects Potato Seedlings Against Heat Stress by Enhancing the Antioxidant Defense System. J. Soil Sci. Plant Nutr. 2021, 21, 1511–1519. [Google Scholar] [CrossRef]
- Li, S.-P.; Zeng, L.-S.; Su, Z.-L. Wheat growth, photosynthesis and physiological characteristics under different soil Zn levels. J. Integr. Agric. 2022, 21, 1927–1940. [Google Scholar] [CrossRef]
- Delwiche, S.R.; Souza, E.J.; Kim, M.S. Limitations of single kernel near-infrared hyperspectral. imaging of soft wheat for milling quality. Biosyst. Eng. 2013, 115, 260–273. [Google Scholar] [CrossRef]
- Zengin, G.; Nithiyanantham, S.; Sarikurkcu, C.; Uysal, S.; Ceylan, R.; Ramya, K.S.; Maskovic, P.; Aktumsek, A. Identification of phenolic profiles, fatty acid compositions, antioxidant activities, and enzyme inhibition effects of seven wheat cultivars grown in Turkey: A phytochemical approach for their nutritional value. Int. J. Food Prop. 2017, 20, 2373–2382. [Google Scholar] [CrossRef]
- Caporaso, N.; Whitworth, M.B.; Fisk, I.D. Protein content prediction in single wheat kernels using hyperspectral imaging. Food Chem. 2018, 240, 32–42. [Google Scholar] [CrossRef]
- Zhu, H.; Cen, H.; Zhang, C.; He, Y. Early Detection and Classification of Tobacco Leaves Inoculated with Tobacco Mosaic Virus Based on Hyperspectral Imaging Technique. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, FL, USA, 17–20 July 2016. [Google Scholar]
- Boshkovski, B.; Tzerakis, C.; Doupis, G.; Zapolska, A.; Kalaitzidis, C.; Koubouris, G. Relationship between physiological and biochemical measurements with spectral reflectance for two Phaseolus vulgaris L. genotypes under multiple stress. Int. J. Remote Sens. 2020, 42, 1230–1249. [Google Scholar] [CrossRef]
- Chong, E.; Jeong, Y.-S.; Lee, J.-H.; Park, D.J.; Kim, J.H. Image visualization of hyperspectral spectrum for LWIR. Infrared Phys. Technol. 2015, 71, 10–17. [Google Scholar] [CrossRef]
Data Set | Sample Size | CAT Activity (mg H2O2/g) | |||
---|---|---|---|---|---|
Maximum | Minimum | Average Value | Standard Deviation | ||
Training set | 315 | 117.78 | 37.99 | 72.66 | 18.14 |
Test set | 105 | 114.24 | 37.91 | 76.49 | 17.333 |
Pretreatment | Neural Networks (BP) | Support Vector Regression (SVR) | ||
---|---|---|---|---|
R2 | Mean Square Error (MSE) | R2 | Mean Square Error (MSE) | |
Original (Y) | 0.9562 | 0.0009 | 0.9569 | 0.0083 |
1ST | 0.9485 | 0.0010 | 0.9689 | 0.0060 |
MSC | 0.9610 | 0.0009 | 0.9635 | 0.0069 |
SNV | 0.9670 | 0.0010 | 0.9638 | 0.0069 |
Pretreatment | Neural Networks (BP) | Support Vector Regression (SVR) | ||
---|---|---|---|---|
R2 | Mean Square Error (MSE) | R2 | Mean Square Error (MSE) | |
Original (Y) | 0.9483 | 0.0009 | 0.9538 | 0.0090 |
1ST | 0.9105 | 0.0008 | 0.9347 | 0.0123 |
MSC | 0.9648 | 0.0010 | 0.9664 | 0.0064 |
SNV | 0.9617 | 0.0010 | 0.9620 | 0.0071 |
Category | BPNN Classification | Support Vector Classification (SVC) | ||
---|---|---|---|---|
Correct Rate/% | Number of Correct Classifications | Correct Rate/% | Number of Correct Classifications | |
Five categories | 67.35 | 33 | 71.43 | 35 |
Four categories: 2 to 3 years of storage | 81.63 | 40 | 69.39 | 34 |
Four categories: 1 to 2 years of storage | 87.76 | 43 | 87.76 | 43 |
Three categories | 100 | 49 | 95.92 | 47 |
Two categories | 100 | 49 | 95.92 | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lu, G.; Zhou, X.; Cheng, J.-H. Non-Destructive Hyperspectral Imaging for Rapid Determination of Catalase Activity and Ageing Visualization of Wheat Stored for Different Durations. Molecules 2022, 27, 8648. https://doi.org/10.3390/molecules27248648
Zhang Y, Lu G, Zhou X, Cheng J-H. Non-Destructive Hyperspectral Imaging for Rapid Determination of Catalase Activity and Ageing Visualization of Wheat Stored for Different Durations. Molecules. 2022; 27(24):8648. https://doi.org/10.3390/molecules27248648
Chicago/Turabian StyleZhang, Yurong, Guanqiang Lu, Xianqing Zhou, and Jun-Hu Cheng. 2022. "Non-Destructive Hyperspectral Imaging for Rapid Determination of Catalase Activity and Ageing Visualization of Wheat Stored for Different Durations" Molecules 27, no. 24: 8648. https://doi.org/10.3390/molecules27248648
APA StyleZhang, Y., Lu, G., Zhou, X., & Cheng, J. -H. (2022). Non-Destructive Hyperspectral Imaging for Rapid Determination of Catalase Activity and Ageing Visualization of Wheat Stored for Different Durations. Molecules, 27(24), 8648. https://doi.org/10.3390/molecules27248648