E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Biological Activities of Plant Secondary Metabolites"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 December 2019

Special Issue Editor

Guest Editor
Prof. Dr. Alessandra Guerrini

University of Ferrara, Department of Life Sciences and Biotechnology (SVeB), Ferrara, Italy
Website | E-Mail
Interests: plant secondary metabolites; chemical characterization; antimicrobial activity; antioxidant activity; cytotoxicity

Special Issue Information

Dear Colleagues,

Medicinal plants have historically played an important role as a source of new drugs. Renewed scientific interest in plant secondary metabolites for drug discovery and for treating important pathologies is evident from the analysis of publications trends in several scientific databases and from the impact on the public health policies.

In this scenario, the study of the biological activity of plant derivatives, often due to the synergistic interactions of several active molecules, becomes crucial in the fight against serious diseases, such as cancer, whose cause is always multi-factorial.

In light of these premises, this Special Issue aims to collect contributions on potential of plant secondary metabolites for health applications, through the chemical characterization of standardized extracts, single compounds and their mixtures, their biological activities, such as cytotoxicity against microorganisms and human cell lines, antimicrobial, antifungal, antioxidant, anti-inflammatory effect and safety properties, such as genotoxicity and/or geno-protection.

Prof. Dr. Alessandra Guerrini
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant secondary metabolites
  • chemical characterization
  • cytotoxicity
  • biological effects

Published Papers (9 papers)

View options order results:
result details:
Displaying articles 1-9
Export citation of selected articles as:

Research

Open AccessArticle
Antioxidative and Potentially Anti-inflammatory Activity of Phenolics from Lovage Leaves Levisticum officinale Koch Elicited with Jasmonic Acid and Yeast Extract
Molecules 2019, 24(7), 1441; https://doi.org/10.3390/molecules24071441
Received: 12 March 2019 / Revised: 5 April 2019 / Accepted: 10 April 2019 / Published: 11 April 2019
PDF Full-text (674 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The effect of elicitation with jasmonic acids (JA) and yeast extract (YE) on the production of phenolic compounds as well as the antioxidant and anti-inflammatory properties of phenolic extracts of lovage was evaluated. The analysis of phenolic compounds carried out with the UPLC-MS [...] Read more.
The effect of elicitation with jasmonic acids (JA) and yeast extract (YE) on the production of phenolic compounds as well as the antioxidant and anti-inflammatory properties of phenolic extracts of lovage was evaluated. The analysis of phenolic compounds carried out with the UPLC-MS technique indicated that rutin was the dominant flavonoid, while 5-caffeoylquinic acid was the main component in the phenolic acid fraction in the lovage leaves. The application of 10 µM JA increased the content of most of the identified phenolic compounds. The highest antioxidant activities estimated as free radical scavenging activity against ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and reducing power were determined for the sample elicited with 10 µM JA, while this value determined as iron chelating ability was the highest for the 0.1% YE-elicited lovage. The 0.1% and 1% YE elicitation also caused significant elevation of the lipoxygenase (LOX) inhibition ability, while all the concentrations of the tested elicitors significantly improved the ability to inhibit cyclooxygenase 2 (COX2) (best results were detected for the 10 µM JA and 0.1% YE2 sample). Thus, 0.1% yeast extract and 10 µM jasmonic acid proved to be most effective in elevation of the biological activity of lovage. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Figures

Figure 1

Open AccessArticle
In Vivo Gastroprotective and Antidepressant Effects of Iridoids, Verbascoside and Tenuifloroside from Castilleja tenuiflora Benth
Molecules 2019, 24(7), 1292; https://doi.org/10.3390/molecules24071292
Received: 25 February 2019 / Revised: 25 March 2019 / Accepted: 29 March 2019 / Published: 2 April 2019
PDF Full-text (2623 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Stress is an important factor in the etiology of some illnesses such as gastric ulcers and depression. Castilleja tenuiflora Benth. (Orobanchaceae) is used in Mexican traditional medicine for the treatment of gastrointestinal diseases and nervous disorders. Previous studies indicated that organic extracts from [...] Read more.
Stress is an important factor in the etiology of some illnesses such as gastric ulcers and depression. Castilleja tenuiflora Benth. (Orobanchaceae) is used in Mexican traditional medicine for the treatment of gastrointestinal diseases and nervous disorders. Previous studies indicated that organic extracts from C. tenuiflora had gastroprotective effects and antidepressant activity. In this study, we aimed to evaluate the gastroprotective and antidepressant activity of fractions and isolated compounds from the methanolic extract (MECt) of C. tenuiflora in stressed mice. Chromatographic fractionation of MECt produced four fractions (FCt-1, FCt-2, CFt-3, and FCt-4) as well as four bioactive compounds which were identified using TLC, HPLC and NMR analyses. The cold restraint stress (CRS)-induced gastric ulcer model followed by the tail suspension test and the forced swim test were used to evaluate the gastroprotective effect and antidepressant activity of the extract fractions. FCt-2 and FCt-3 at 100 mg/kg had significant gastroprotective and antidepressant effects. All isolated compounds (verbascoside, teniufloroside and mixture geniposide/ musseanoside) displayed gastroprotective effects and antidepressant activity at 1 or 2 mg/kg. The above results allow us to conclude that these polyphenols and iridoids from C. tenuiflora are responsible for the gastroprotective and antidepressant effects. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Figures

Graphical abstract

Open AccessArticle
Polyacetylenes from the Roots of Swietenia macrophylla King
Molecules 2019, 24(7), 1291; https://doi.org/10.3390/molecules24071291
Received: 22 February 2019 / Revised: 20 March 2019 / Accepted: 22 March 2019 / Published: 2 April 2019
PDF Full-text (851 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A phytochemical investigation of the roots of Swietenia macrophylla led to the isolation of seven polyacetylenes, including five new compounds (15) and two known ones (67). Their structures were elucidated by extensive spectroscopic analysis and [...] Read more.
A phytochemical investigation of the roots of Swietenia macrophylla led to the isolation of seven polyacetylenes, including five new compounds (15) and two known ones (67). Their structures were elucidated by extensive spectroscopic analysis and detailed comparison with reported data. All the isolates were tested for their cytotoxicity against the human hepatocellular carcinoma cell line BEL-7402, human myeloid leukemia cell line K562, and human gastric carcinoma cell line SGC-7901. Compounds 1 and 6 showed moderate cytotoxicity against the above three human cancer cell lines with IC50 values ranging from 14.3 to 45.4 μM. Compound 4 displayed cytotoxicity against the K562 and SGC-7901 cancer cell lines with IC50 values of 26.2 ± 0.4 and 21.9 ± 0.3 μM, respectively. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Figures

Graphical abstract

Open AccessArticle
Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities
Molecules 2019, 24(6), 1109; https://doi.org/10.3390/molecules24061109
Received: 18 February 2019 / Revised: 12 March 2019 / Accepted: 15 March 2019 / Published: 20 March 2019
PDF Full-text (4383 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Triterpene acid and phenolic constituents from nine ancient varieties of apple (Malus domestica) fruits cultivated in Fanna, Friuli Venezia Giulia region, northeast Italy, were analyzed and compared with four commercial apples (‘Golden Delicious’, ‘Red Delicious’, ‘Granny Smith’ and ‘Royal Gala’). Total [...] Read more.
Triterpene acid and phenolic constituents from nine ancient varieties of apple (Malus domestica) fruits cultivated in Fanna, Friuli Venezia Giulia region, northeast Italy, were analyzed and compared with four commercial apples (‘Golden Delicious’, ‘Red Delicious’, ‘Granny Smith’ and ‘Royal Gala’). Total phenolic and flavonoid contents were measured by spectrophotometric assays. The quali-quantitative fingerprint of secondary metabolites including triterpene acid was obtained by LC-DAD-(ESI)-MS and LC-(APCI)-MS, respectively. Based on the two LC-MS datasets, multivariate analysis was used to compare the composition of ancient fruit varieties with those of four commercial apples. Significant differences related mainly to the pattern of triterpene acids were found. Pomolic, euscaphyc, maslinic and ursolic acids are the most abundant triterpene in ancient varieties pulps and peels, while ursolic and oleanolic acids were prevalent in the commercial fruits. Also, the content of the phenolic compounds phloretin-2-O-xyloglucoside and quercetin-3-O-arabinoside was greater in ancient apple varieties. The antioxidant (radical scavenging, reducing power, metal chelating and phosphomolybdenum assays) and enzyme inhibitory effects (against cholinesterase, tyrosinase, amylase and glucosidase) of the samples were investigated in vitro. Antioxidant assays showed that the peels were more active than pulps. However, all the samples exhibited similar enzyme inhibitory effects. Ancient Friuli Venezia Giulia apple cultivars can be a source of chlorogenic acid and various triterpene acids, which are known for their potential anti-inflammatory activity and beneficial effects on lipid and glucose metabolism. Our results make these ancient varieties suitable for the development of new nutraceutical ingredients. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Figures

Graphical abstract

Open AccessArticle
Antioxidant, Gastroprotective, Cytotoxic Activities and UHPLC PDA-Q Orbitrap Mass Spectrometry Identification of Metabolites in Baccharis grisebachii Decoction
Molecules 2019, 24(6), 1085; https://doi.org/10.3390/molecules24061085
Received: 23 January 2019 / Revised: 7 March 2019 / Accepted: 14 March 2019 / Published: 19 March 2019
PDF Full-text (1056 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The decoction of the local plant Baccharis grisebachii is used as a digestive, gastroprotective, external cicatrizing agent and antiseptic in Argentine. A lyophilized decoction (BLD) from the aerial parts of this plant was evaluated regarding its anti-ulcer, antioxidant and cytotoxic activities and the [...] Read more.
The decoction of the local plant Baccharis grisebachii is used as a digestive, gastroprotective, external cicatrizing agent and antiseptic in Argentine. A lyophilized decoction (BLD) from the aerial parts of this plant was evaluated regarding its anti-ulcer, antioxidant and cytotoxic activities and the bioactivities were supported by UHPLC-MS metabolome fingerprinting which revealed the presence of several small bioactive compounds. The antioxidant properties were evaluated by DPPH, TEAC, FRAP and lipoperoxidation inhibition in erythrocytes methods, and the antibacterial activity was evaluated according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The BLD showed a moderate free radical scavenging activity in the DPPH (EC50 = 106 µg/mL) and lipid peroxidation in erythrocytes assays (67%, at 250 µg/mL). However, the BLD had the highest gastroprotective effect at a dose of 750 mg/kg with a ninety-three percent inhibition of damage through a mechanism that involve NO and prostaglandins using the ethanol-induced gastric damage in a standard rat model. On the other hand, BLD does not induce cytotoxic changes on human tumor and no-tumor cell lines at the concentrations assayed. Regarding the metabolomic analysis, thirty-one compounds were detected and 30 identified based on UHPLC-OT-MS including twelve flavonoids, eleven cinnamic acid derivatives, one coumarin, one stilbene and two other different phenolic compounds. The results support that the medicinal decoction of Baccharis grisebachii is a valuable natural product with gastroprotective effects and with potential to improve human health that opens a pathway for the development of important phytomedicine products. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Figures

Figure 1

Open AccessArticle
Antimycobacterial and Nitric Oxide Production Inhibitory Activities of Triterpenes and Alkaloids from Psychotria nuda (Cham. & Schltdl.) Wawra
Molecules 2019, 24(6), 1026; https://doi.org/10.3390/molecules24061026
Received: 1 February 2019 / Revised: 20 February 2019 / Accepted: 5 March 2019 / Published: 15 March 2019
PDF Full-text (689 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A phytochemical study of leaves and twigs of Psychotria nuda resulted in 19 compounds, including five indole alkaloids, N,N,N-trimethyltryptamine, lyaloside, strictosamide, strictosidine, and 5α-carboxystrictosidine; two flavonolignans, cinchonain Ia and cinchonain Ib; an iridoid, roseoside; a sugar, lawsofructose; a [...] Read more.
A phytochemical study of leaves and twigs of Psychotria nuda resulted in 19 compounds, including five indole alkaloids, N,N,N-trimethyltryptamine, lyaloside, strictosamide, strictosidine, and 5α-carboxystrictosidine; two flavonolignans, cinchonain Ia and cinchonain Ib; an iridoid, roseoside; a sugar, lawsofructose; a coumarin, scopoletin; a diterpene, phytol; three triterpenes, pomolic acid, spinosic acid, and rotungenic acid; and five steroids, sitosterol, stigmasterol, campesterol, β-sitosterol-3-O-β-d-glucoside, and β-stigmasterol-3-O-β-d-glucoside. Some compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis and their ability to inhibit NO production by macrophages stimulated by lipopolysaccharide (LPS). The compounds pomolic acid, spinosic acid, strictosidine, and 5α-carboxystrictosidine displayed antimycobacterial activity with minimum inhibitory concentrations ranging from 7.1 to 19.2 µg/mL. These compounds showed promising inhibitory activity against NO production (IC50 3.22 to 25.5 μg/mL). 5α-carboxystrictosidine did not show cytotoxicity against macrophages RAW264.7 up to a concentration of 100 µg/mL. With the exception of strictosamide, this is the first report of the occurrence of these substances in P. nuda. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Figures

Figure 1

Open AccessArticle
Hydrolysable Tannins and Biological Activities of Meriania hernandoi and Meriania nobilis (Melastomataceae)
Molecules 2019, 24(4), 746; https://doi.org/10.3390/molecules24040746
Received: 19 January 2019 / Revised: 8 February 2019 / Accepted: 15 February 2019 / Published: 19 February 2019
PDF Full-text (1319 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A bio-guided study of leaf extracts allowed the isolation of two new macrobicyclic hydrolysable tannins, namely merianin A (1) and merianin B (2), and oct-1-en-3-yl β-xylopyranosyl-(1”-6’)-β-glucopyranoside (3) from Meriania hernandoi, in addition to [...] Read more.
A bio-guided study of leaf extracts allowed the isolation of two new macrobicyclic hydrolysable tannins, namely merianin A (1) and merianin B (2), and oct-1-en-3-yl β-xylopyranosyl-(1”-6’)-β-glucopyranoside (3) from Meriania hernandoi, in addition to 11 known compounds reported for the first time in the Meriania genus. The structures were elucidated by spectroscopic analyses including one- and two-dimensional NMR techniques and mass spectrometry. The bioactivities of the compounds were determined by measuring the DPPH radical scavenging activity and by carrying out antioxidant power assays (FRAP), etiolated wheat coleoptile assays and phytotoxicity assays on the standard target species Lycopersicum esculentum W. (tomato). Compounds 1 and 2 exhibited the best free radical scavenging activities, with FRS50 values of 2.0 and 1.9 µM, respectively. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Figures

Graphical abstract

Open AccessArticle
Phenolic Composition, Antioxidant Properties, and Inhibition toward Digestive Enzymes with Molecular Docking Analysis of Different Fractions from Prinsepia utilis Royle Fruits
Molecules 2018, 23(12), 3373; https://doi.org/10.3390/molecules23123373
Received: 7 November 2018 / Revised: 14 December 2018 / Accepted: 17 December 2018 / Published: 19 December 2018
Cited by 1 | PDF Full-text (4510 KB) | HTML Full-text | XML Full-text
Abstract
The present study investigated the phenolic profiles and antioxidant properties of different fractions from Prinsepia utilis Royle fruits using molecular docking analysis to delineate their inhibition toward digestive enzymes. A total of 20 phenolics was identified and quantified. Rutin, quercetin-3-O-glucoside, and [...] Read more.
The present study investigated the phenolic profiles and antioxidant properties of different fractions from Prinsepia utilis Royle fruits using molecular docking analysis to delineate their inhibition toward digestive enzymes. A total of 20 phenolics was identified and quantified. Rutin, quercetin-3-O-glucoside, and isorhamnetin-3-O-rutinoside were the major phenolic compounds in the total phenolic fraction and flavonoid-rich fraction. The anthocyanin-rich fraction mainly contained cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside. All of the fractions exhibited strong radical scavenging activities and good inhibition on cellular reactive oxygen species (ROS) generation in H2O2-induced HepG2 cells, as evaluated by DPPH and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Moreover, the powerful inhibitory effects of those fractions against pancreatic lipase and α-glucosidase were observed. The major phenolic compounds that were found in the three fractions also showed good digestive enzyme inhibitory activities in a dose-dependent manner. Molecular docking analysis revealed the underlying inhibition mechanisms of those phenolic standards against digestive enzymes, and the theoretical analysis data were consistent with the experimental results. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Figures

Figure 1

Open AccessArticle
Chemoinformatic Analysis of Selected Cacalolides from Psacalium decompositum (A. Gray) H. Rob. & Brettell and Psacalium peltatum (Kunth) Cass. and Their Effects on FcεRI-Dependent Degranulation in Mast Cells
Molecules 2018, 23(12), 3367; https://doi.org/10.3390/molecules23123367
Received: 6 November 2018 / Revised: 6 December 2018 / Accepted: 15 December 2018 / Published: 19 December 2018
PDF Full-text (1422 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cacalolides are a kind of sesquiterpenoids natural compounds synthesized by Psacalium decompositum (A. Gray) H. Rob. & Brettell or Psacalium peltatum (Kunth) Cass. Antioxidant and hypoglycemic effects have been found for cacalolides such as cacalol, cacalone or maturine, however, their effects on inflammatory [...] Read more.
Cacalolides are a kind of sesquiterpenoids natural compounds synthesized by Psacalium decompositum (A. Gray) H. Rob. & Brettell or Psacalium peltatum (Kunth) Cass. Antioxidant and hypoglycemic effects have been found for cacalolides such as cacalol, cacalone or maturine, however, their effects on inflammatory processes are still largely unclear. The main aim of this study was to investigate the biological activities of secondary metabolites from P. decompositum and P. peltatum through two approaches: (1) chemoinformatic and toxicoinformatic analysis based on ethnopharmacologic background; and (2) the evaluation of their potential anti-inflammatory/anti-allergic effects in bone marrow-derived mast cells by IgE/antigen complexes. The bioinformatics properties of the compounds: cacalol; cacalone; cacalol acetate and maturin acetate were evaluated through Osiris DataWarrior software and Molinspiration and PROTOX server. In vitro studies were performed to test the ability of these four compounds to inhibit antigen-dependent degranulation and intracellular calcium mobilization, as well as the production of reactive oxygen species in bone marrow-derived mast cells. Our findings showed that cacalol displayed better bioinformatics properties, also exhibited a potent inhibitory activity on IgE/antigen-dependent degranulation and significantly reduced the intracellular calcium mobilization on mast cells. These data suggested that cacalol could reduce the negative effects of the mast cell-dependent inflammatory process. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Figures

Figure 1

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top