molecules-logo

Journal Browser

Journal Browser

Synthesis of Nanomaterials and Their Applications in Biomedicine

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 15709

Special Issue Editor


E-Mail Website
Guest Editor
School of Health Sciences, Department of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
Interests: nanomedicine; nanotechnology; biomaterials; cancer
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Advances in nanoscience have been greatly beneficial to biomedicine with regard to the preparation of innovative nanomaterials, hybrid nanocomposites, multifunctional materials, and 3D-printed structures enhanced with nanoparticles, either for diagnosis or therapeutic approaches.

This Special Issue is concerned with the synthesis of nanomaterials and their applications in biomedicine, including the development of organic and inorganic nanomaterials with the potential to be used for biomedical applications. Thus, topics for this Special Issue may include synthesis procedures, physicochemical characterization, and interactions of various nanomaterials with biological systems. Special attention will be given to photodynamic and photothermal applications, theranostic approaches, and bioimaging.

Both original manuscripts and reviews are welcome.

Dr. Nefeli Lagopati
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • biomaterials
  • synthesis
  • characterization
  • diagnosis
  • treatment
  • cytotoxicity
  • biocompatibility

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

24 pages, 5754 KiB  
Article
Green Synthesis of Silver Nanoparticles from Chlorella vulgaris Aqueous Extract and Their Effect on Salmonella enterica and Chicken Embryo Growth
by Sebastian Michalec, Wiktoria Nieckarz, Wiktoria Klimek, Agata Lange, Arkadiusz Matuszewski, Klara Piotrowska, Anna Hotowy, Małgorzata Kunowska-Slósarz and Malwina Sosnowska
Molecules 2025, 30(7), 1521; https://doi.org/10.3390/molecules30071521 - 29 Mar 2025
Viewed by 491
Abstract
Silver nanoparticles (AgNPs), synthesised using Chlorella vulgaris algal extract and silver nitrate, are studied in medicine for their antibacterial properties in poultry. This study assessed the effect of AgNPs on bacterial inhibition and early development and blood parameters in Ross 308 chicken embryos. [...] Read more.
Silver nanoparticles (AgNPs), synthesised using Chlorella vulgaris algal extract and silver nitrate, are studied in medicine for their antibacterial properties in poultry. This study assessed the effect of AgNPs on bacterial inhibition and early development and blood parameters in Ross 308 chicken embryos. AgNPs were characterised using transmission electron microscopy, scanning electron microscopy with a focused ion beam, UV–Vis spectroscopy, and a zetasizer. The antibacterial properties of the AgNP colloid against S. enterica were assessed using minimal inhibitory concentration, minimal bacterial concentration, and PrestoBlue assays. AgNP colloid (2 mg/L) was injected into egg albumen on day 0. Chicken embryos were incubated for 3 and 16 d. The effect of AgNPs on 3 d old embryos was evaluated based on mortality and somite count using the Hamburger–Hamilton classification. For older embryos, mortality, dimensions, anatomical changes, organ mass, plasma liver enzymes and antioxidants, and red blood cell morphology were determined. Blood samples from the control group embryos were assessed for the impact of AgNPs on hemolysis. AgNPs inhibited S. enterica growth at concentrations >6.75 mg/L. A 3 d exposure to AgNPs caused an insignificant decrease in the number of somites without affecting embryo mortality. However, a 16 d exposure to AgNPs reduced live embryos and plasma antioxidants, changed the levels of ALT, AST, and GGT, altered red blood cell morphology, and caused hemolysis. Toxicity of AgNPs was model-dependent, whereby the chicken embryo was more sensitive to AgNPs than the bacterium. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Graphical abstract

13 pages, 2686 KiB  
Article
Development of Layer-by-Layer Magnetic Nanoparticles for Application to Radiotherapy of Pancreatic Cancer
by Nobuyoshi Fukumitsu, Yoshitaka Matsumoto, Lili Chen, Yu Sugawara, Nanami Fujisawa, Eri Niiyama, Sosuke Ouchi, Emiho Oe, Takashi Saito and Mitsuhiro Ebara
Molecules 2025, 30(6), 1382; https://doi.org/10.3390/molecules30061382 - 20 Mar 2025
Viewed by 380
Abstract
Pancreatic cancer is among the deadliest malignancies, with few treatment options for locally advanced, unresectable cases. Conventional therapies, such as chemoradiotherapy and hyperthermia, show promise but face challenges in improving outcomes. This study introduces a novel drug delivery system using gemcitabine (GEM)-loaded layer-by-layer [...] Read more.
Pancreatic cancer is among the deadliest malignancies, with few treatment options for locally advanced, unresectable cases. Conventional therapies, such as chemoradiotherapy and hyperthermia, show promise but face challenges in improving outcomes. This study introduces a novel drug delivery system using gemcitabine (GEM)-loaded layer-by-layer magnetic nanoparticles (LBL MNPs) combined with alternating magnetic field (AMF) application and X-ray irradiation to enhance therapeutic efficacy. LBL MNPs were synthesized using optimized layering techniques to achieve superior drug loading and controlled release. Human pancreatic cancer cells (PANC-1) were treated with LBL MNPs alone, with AMF-induced hyperthermia, and in combination with X-rays. The results demonstrate that the 7-layer LBL MNPs exhibited optimal cytotoxicity, significantly reducing cell viability at concentrations of 30 µg/mL and higher. Combining 7-layer LBL MNPs with AMF increased cell death in a time- and concentration-dependent manner, achieving up to 98% inhibition of cell proliferation. The addition of X-rays to the regimen demonstrated a strong synergistic effect, resulting in a 13-fold increase in cell death compared to controls. These findings highlight the potential of this integrated approach to improve outcomes in patients with pancreatic cancer. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

17 pages, 1610 KiB  
Article
Catalase-Knockout Complements the Radio-Sensitization Effect of Titanium Peroxide Nanoparticles on Pancreatic Cancer Cells
by Winda Tasia, Amane Washio, Koki Yamate, Kenta Morita, Yutaro Mori, Prihardi Kahar, Ryohei Sasaki and Chiaki Ogino
Molecules 2025, 30(3), 629; https://doi.org/10.3390/molecules30030629 - 31 Jan 2025
Viewed by 727
Abstract
In previous studies, titanium peroxide nanoparticles (PAA-TiOx NPs) with surfaces functionalized using polyacrylic acid (PAA) and hydrogen peroxide (H2O2) demonstrated a synergistic effect when combined with X-ray irradiation. The combination generated H2O2 and reactive oxygen species [...] Read more.
In previous studies, titanium peroxide nanoparticles (PAA-TiOx NPs) with surfaces functionalized using polyacrylic acid (PAA) and hydrogen peroxide (H2O2) demonstrated a synergistic effect when combined with X-ray irradiation. The combination generated H2O2 and reactive oxygen species (ROS) that enhanced the irradiation efficacy. In the present study, we examined the relationship between catalase and PAA-TiOx NPs sensitization to X-ray radiation because catalase is the primary antioxidant enzyme that converts H2O2 to water and oxygen. Catalase-knockout PANC-1 (dCAT) cells were generated using the CRISPR/Cas9 system, which was confirmed by the suppression of catalase expression in mRNA and protein levels that resulted in an 81.7% decrease in catalase activity compared with levels in wild-type cells. Catalase deficiency was found to increase the production of ROS, particularly in hypoxia. Also, the combination of PAA-TiOx NPs and X-ray 5 Gy resulted in a 7-fold decrease in the survival fraction (SF; p < 0.01) of dCAT cells compared with rates documented in wild-type cells. Interestingly, the combination treatment with X-ray 3 Gy in dCAT cells resulted in an SF similar to that observed in wild-type cells treated with the same combination but at a higher radiation dose (5 Gy). These results suggest that a strategy of catalase inhibition could be used to establish an advanced combination treatment of PAA-TiOx NPs and X-ray irradiation for pancreatic cancer cells. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Graphical abstract

10 pages, 1519 KiB  
Article
Continuous Production of Docetaxel-Loaded Nanostructured Lipid Carriers Using a Coaxial Turbulent Jet Mixer with Heating System
by Hyeon Su Lim, Won Il Choi and Jong-Min Lim
Molecules 2025, 30(2), 279; https://doi.org/10.3390/molecules30020279 - 12 Jan 2025
Viewed by 813
Abstract
The continuous synthesis of nanoparticles (NPs) has been actively studied due to its great potential to produce NPs with reproducible and controllable physicochemical properties. Here, we achieved the high throughput production of nanostructured lipid carriers (NLCs) using a coaxial turbulent jet mixer with [...] Read more.
The continuous synthesis of nanoparticles (NPs) has been actively studied due to its great potential to produce NPs with reproducible and controllable physicochemical properties. Here, we achieved the high throughput production of nanostructured lipid carriers (NLCs) using a coaxial turbulent jet mixer with an added heating system. This device, designed for the crossflow of precursor solution and non-solvent, combined with the heating system, efficiently dissolves solid lipids and surfactants. We reported the flow regime according to the Reynolds number (Re). Also, we confirmed the size controllability of NLCs as dependent on both Re and lipid concentration. The optimized synthesis yields NLCs around 80 nm, ideal for targeted drug delivery by enhanced permeability and retention (EPR) effect. The coaxial turbulent jet mixer enables effective mixing, producing uniform size distribution of NLCs. The NLCs prepared using the coaxial turbulent jet mixer were smaller, more uniform, and had higher drug loading compared to the NLCs synthesized by a bulk nanoprecipitation method, showcasing its potential for advancing nanomedicine. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

16 pages, 6174 KiB  
Article
Raman Spectroscopic Analysis of Molecular Structure and Mechanical Properties of Hypophosphatasia Primary Tooth
by Hayata Imamura, Tetsuya Adachi, Wenliang Zhu, Toshiro Yamamoto, Narisato Kanamura, Hiroaki Onoda, Aki Nakamura-Takahashi, Masataka Kasahara, Masaru Nakada, Hideo Sato and Giuseppe Pezzotti
Molecules 2024, 29(24), 6049; https://doi.org/10.3390/molecules29246049 - 22 Dec 2024
Cited by 1 | Viewed by 1242
Abstract
Mild hypophosphatasia (HPP) can be difficult to distinguish from other bone disorders in the absence of typical symptoms such as the premature loss of primary teeth. Therefore, this study aimed to analyze the crystallinity of hydroxyapatite (HAp) and the three-dimensional structure of collagen [...] Read more.
Mild hypophosphatasia (HPP) can be difficult to distinguish from other bone disorders in the absence of typical symptoms such as the premature loss of primary teeth. Therefore, this study aimed to analyze the crystallinity of hydroxyapatite (HAp) and the three-dimensional structure of collagen in HPP teeth at the molecular level and to search for new biomarkers of HPP. Raman spectroscopy was used to investigate the molecular structure, composition, and mechanical properties of primary teeth from healthy individuals and patients with HPP. The results showed that the crystallinity of HAp decreased and the carbonate apatite content increased in the region near the dentin–enamel junction (DEJ) of HPP primary teeth. X-ray diffraction (XRD) analyses confirmed a decrease in HAp crystallinity near the DEJ, and micro-computed tomography (CT) scanning revealed a decrease in mineral density in this region. These results suggest incomplete calcification in HPP primary dentin and may contribute to the development of diagnostic and therapeutic agents. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Graphical abstract

19 pages, 5820 KiB  
Article
Studying the Effect of Reducing Agents on the Properties of Gold Nanoparticles and Their Integration into Hyaluronic Acid Hydrogels
by Elżbieta Adamska, Agata Kowalska, Anna Wcisło, Katarzyna Zima and Beata Grobelna
Molecules 2024, 29(24), 5837; https://doi.org/10.3390/molecules29245837 - 11 Dec 2024
Viewed by 1065
Abstract
Gold nanoparticles (Au NPs) are a promising target for research due to their small size and the resulting plasmonic properties, which depend, among other things, on the chosen reducer. This is important because removing excess substrate from the reaction mixture is problematic. However, [...] Read more.
Gold nanoparticles (Au NPs) are a promising target for research due to their small size and the resulting plasmonic properties, which depend, among other things, on the chosen reducer. This is important because removing excess substrate from the reaction mixture is problematic. However, Au NPs are an excellent component of various materials, enriching them with their unique features. One example is hydrogels, which provide a good, easily modifiable base for multiple applications such as cosmetics. For this purpose, various compounds, including hyaluronic acid (HA) and its derivatives, are distinguished by their high water-binding capacity and many characteristics resulting from their natural origin in organisms, including biocompatibility, biodegradability, and tissue regeneration. In this work Au NPs were synthesized using a green chemistry method, either by using onion extract as a reductant or chemically reducing them with sodium citrate. A complete characterization of the nanoparticles was carried out using the following methods: Fourier-Transform Infrared Spectroscopy (FT-IR), Electrophoretic (ELS), and Dynamic Light Scattering (DLS) as well as Transmission Electron Microscope (TEM) and Scanning Electron Microscope (SEM). Their antioxidant activity was also tested using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). The results showed that the synthesized nanoparticles enrich the hydrogels with antioxidant properties and new surface properties (depending on the reducing agent, they can be more hydrophilic or hydrophobic). Preliminary observations indicated low cytotoxicity of the nanomaterials in both liquid form and as a hydrogel component, as well as their lack of penetration through pig skin. The cosmetic properties of hydrogel masks were also confirmed, such as increasing skin hydration. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Graphical abstract

22 pages, 5652 KiB  
Article
Development of Alginate Hydrogels Incorporating Essential Oils Loaded in Chitosan Nanoparticles for Biomedical Applications
by Ioanna Pitterou, Flora Kalogeropoulou, Andromachi Tzani, Konstantinos Tsiantas, Maria Anna Gatou, Evangelia Pavlatou, Anthimia Batrinou, Christina Fountzoula, Anastasios Kriebardis, Panagiotis Zoumpoulakis and Anastasia Detsi
Molecules 2024, 29(22), 5318; https://doi.org/10.3390/molecules29225318 - 12 Nov 2024
Cited by 1 | Viewed by 1725
Abstract
A hybrid alginate hydrogel–chitosan nanoparticle system suitable for biomedical applications was prepared. Chitosan (CS) was used as a matrix for the encapsulation of lavender (Lavandula angustifolia) essential oil (LEO) and Mentha (Mentha arvensis) essential oil (MEO). An aqueous solution [...] Read more.
A hybrid alginate hydrogel–chitosan nanoparticle system suitable for biomedical applications was prepared. Chitosan (CS) was used as a matrix for the encapsulation of lavender (Lavandula angustifolia) essential oil (LEO) and Mentha (Mentha arvensis) essential oil (MEO). An aqueous solution of an acidic Natural Deep Eutectic Solvent (NADES), namely choline chloride/ascorbic acid in a 2:1 molar ratio, was used to achieve the acidic environment for the dissolution of chitosan and also played the role of the ionic gelator for the preparation of the chitosan nanoparticles (CS-NPs). The hydrodynamic diameter of the CS-MEO NPs was 130.7 nm, and the size of the CS-LEO NPs was 143.4 nm (as determined using Nanoparticle Tracking Analysis). The CS-NPs were incorporated into alginate hydrogels crosslinked with CaCl2. The hydrogels showed significant water retention capacity (>80%) even after the swollen sample was kept in the aqueous HCl solution (pH 1.2) for 4 h, indicating a good stability of the network. The hydrogels were tested (a) for their ability to absorb dietary lipids and (b) for their antimicrobial activity against Gram-positive and Gram-negative foodborne pathogens. The antimicrobial activity of the hybrid hydrogels was comparable to that of the widely used food preservative sodium benzoate 5% w/v. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

17 pages, 6837 KiB  
Article
Synergistic Therapeutic Effects of D-Mannitol–Cerium–Quercetin (Rutin) Coordination Polymer Nanoparticles on Acute Lung Injury
by Yusheng Zhang, Hong Wang, Ruiying Yang, Ying Zhang, Yao Chen, Cuiping Jiang and Xianyu Li
Molecules 2024, 29(12), 2819; https://doi.org/10.3390/molecules29122819 - 13 Jun 2024
Cited by 1 | Viewed by 1649
Abstract
Acute lung injury (ALI) remains a significant global health issue, necessitating novel therapeutic interventions. In our latest study, we pioneered the use of D-mannitol–cerium–quercetin/rutin coordination polymer nanoparticles (MCQ/R NPs) as a potential treatment for ALI. The MCQ/R NPs, which integrate rutin and quercetin [...] Read more.
Acute lung injury (ALI) remains a significant global health issue, necessitating novel therapeutic interventions. In our latest study, we pioneered the use of D-mannitol–cerium–quercetin/rutin coordination polymer nanoparticles (MCQ/R NPs) as a potential treatment for ALI. The MCQ/R NPs, which integrate rutin and quercetin for their therapeutic potential and D-mannitol for its pulmonary targeting, displayed exceptional efficacy. By utilizing cerium ions for optimal nanoparticle assembly, the MCQ/R NPs demonstrated an average size of less than 160 nm. Impressively, these nanoparticles outperformed conventional treatments in both antioxidative capabilities and biocompatibility. Moreover, our in vivo studies on LPS-induced ALI mice showed a significant reduction in lung tissue inflammation. This groundbreaking research presents MCQ/R NPs as a promising new approach in ALI therapeutics. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

Review

Jump to: Research

17 pages, 1473 KiB  
Review
Advances in Metal and Metal Oxide Nanomaterials for Topical Antimicrobial Applications: Insights and Future Perspectives
by Belmina Saric Medic, Nikolina Tomic, Nefeli Lagopati, Maria Gazouli and Lejla Pojskic
Molecules 2024, 29(23), 5551; https://doi.org/10.3390/molecules29235551 - 25 Nov 2024
Viewed by 1917
Abstract
Nanotechnology has seen significant growth in the past few decades, with the use of nanomaterials reaching a wide scale. Given that antimicrobial resistance is peaking, nanotechnology holds distinct potential in this area. This review discusses recent applications of metal and metal oxide nanoparticles [...] Read more.
Nanotechnology has seen significant growth in the past few decades, with the use of nanomaterials reaching a wide scale. Given that antimicrobial resistance is peaking, nanotechnology holds distinct potential in this area. This review discusses recent applications of metal and metal oxide nanoparticles as antibacterial, antifungal, and antiviral agents, particularly focusing on their topical applications and their role in chronic wound therapy. We explore their use in various forms, including coated, encapsulated, and incorporated in hydrogels or as complexes, proposing them as topical antimicrobials with promising properties. Some studies have shown that metal and metal oxide nanoparticles can exhibit cytotoxic and genotoxic effects, while others have found no such properties. These effects depend on factors such as nanoparticle size, shape, concentration, and other characteristics. It is essential to establish the dose or concentration associated with potential toxic effects and to investigate the severity of these effects to determine a threshold below which metal or metal oxide nanoparticles will not produce negative outcomes. Therefore, further research should focus on safety assessments, ensuring that metal and metal oxide nanoparticles can be safely used as therapeutics in biomedical sciences. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Graphical abstract

29 pages, 664 KiB  
Review
Nano-Based Approaches in Surface Modifications of Dental Implants: A Literature Review
by Chrysa Marasli, Hector Katifelis, Maria Gazouli and Nefeli Lagopati
Molecules 2024, 29(13), 3061; https://doi.org/10.3390/molecules29133061 - 27 Jun 2024
Cited by 8 | Viewed by 4996
Abstract
Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the [...] Read more.
Rehabilitation of fully or partially edentulous patients with dental implants represents one of the most frequently used surgical procedures. The work of Branemark, who observed that a piece of titanium embedded in rabbit bone became firmly attached and difficult to remove, introduced the concept of osseointegration and revolutionized modern dentistry. Since then, an ever-growing need for improved implant materials towards enhanced material–tissue integration has emerged. There is a strong belief that nanoscale materials will produce a superior generation of implants with high efficiency, low cost, and high volume. The aim of this review is to explore the contribution of nanomaterials in implantology. A variety of nanomaterials have been proposed as potential candidates for implant surface customization. They can have inherent antibacterial properties, provide enhanced conditions for osseointegration, or act as reservoirs for biomolecules and drugs. Titania nanotubes alone or in combination with biological agents or drugs are used for enhanced tissue integration in dental implants. Regarding immunomodulation and in order to avoid implant rejection, titania nanotubes, graphene, and biopolymers have successfully been utilized, sometimes loaded with anti-inflammatory agents and extracellular vesicles. Peri-implantitis prevention can be achieved through the inherent antibacterial properties of metal nanoparticles and chitosan or hybrid coatings bearing antibiotic substances. For improved corrosion resistance various materials have been explored. However, even though these modifications have shown promising results, future research is necessary to assess their clinical behavior in humans and proceed to widespread commercialization. Full article
(This article belongs to the Special Issue Synthesis of Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

Back to TopTop