Advances in Microbial Biofilm Formation

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Biofilm".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 8956

Special Issue Editor


E-Mail Website
Guest Editor
Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
Interests: microbial biofilm formation; cyclic di-nucleotide signaling; pathogen-host interaction; protein quality control; Salmonella typhimurium; Pseudomonas aeruginosa; Candida parapsilosis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is the continuation of our Special Issue “Feature Papers in Microbial Biofilm Formation”.

Microbial biofilm formation, the coordinated assembly of self-replicating cells into multicellular communities, emerged at least 3.5 billion years ago and is an ancient prototype of tissue-like structures connected by an extracellular matrix that arose in order to more efficiently meet metabolic, physiological, and environmental challenges. As challenges can be met under almost or even all circumstances, biofilm formation of microorganisms is even today ubiquitous and diverse. Although beneficial in many settings such as biofilm formation of microorganisms in the global terrestrial biosphere, of the commensal flora, and of microbes in wastewater treatment, and much more common, detrimental biofilm formation can also occur in clinical, industrial, and agricultural settings can implement undesirable long-term consequences. Due to the complexity of multicellular aggregate formation, theoretical and experimental approaches from different disciplines need to tackle the various aspects of biofilm formation. In this volume of featured papers, some of the diverse aspects of biofilm research will be addressed. 

Prof. Dr. Ute Römling
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • commensal
  • environment
  • metabolism
  • multi-disciplinarity
  • pathogen
  • second messenger signaling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 4828 KiB  
Article
L-Rhamnose Globally Changes the Transcriptome of Planktonic and Biofilm Escherichia coli Cells and Modulates Biofilm Growth
by Charlotte E. Hantus, Isabella J. Moppel, Jenna K. Frizzell, Anna E. Francis, Kyogo Nagashima and Lisa M. Ryno
Microorganisms 2024, 12(9), 1911; https://doi.org/10.3390/microorganisms12091911 - 19 Sep 2024
Viewed by 1349
Abstract
L-rhamnose, a naturally abundant sugar, plays diverse biological roles in bacteria, influencing biofilm formation and pathogenesis. This study investigates the global impact of L-rhamnose on the transcriptome and biofilm formation of PHL628 E. coli under various experimental conditions. We compared growth in planktonic [...] Read more.
L-rhamnose, a naturally abundant sugar, plays diverse biological roles in bacteria, influencing biofilm formation and pathogenesis. This study investigates the global impact of L-rhamnose on the transcriptome and biofilm formation of PHL628 E. coli under various experimental conditions. We compared growth in planktonic and biofilm states in rich (LB) and minimal (M9) media at 28 °C and 37 °C, with varying concentrations of L-rhamnose or D-glucose as a control. Our results reveal that L-rhamnose significantly affects growth kinetics and biofilm formation, particularly reducing biofilm growth in rich media at 37 °C. Transcriptomic analysis through RNA-seq showed that L-rhamnose modulates gene expression differently depending on the temperature and media conditions, promoting a planktonic state by upregulating genes involved in rhamnose transport and metabolism and downregulating genes related to adhesion and biofilm formation. These findings highlight the nuanced role of L-rhamnose in bacterial adaptation and survival, providing insight into potential applications in controlling biofilm-associated infections and industrial biofilm management. Full article
(This article belongs to the Special Issue Advances in Microbial Biofilm Formation)
Show Figures

Figure 1

21 pages, 6272 KiB  
Article
Influence of Copper on Oleidesulfovibrio alaskensis G20 Biofilm Formation
by Payal Thakur, Vinoj Gopalakrishnan, Priya Saxena, Mahadevan Subramaniam, Kian Mau Goh, Brent Peyton, Matthew Fields and Rajesh Kumar Sani
Microorganisms 2024, 12(9), 1747; https://doi.org/10.3390/microorganisms12091747 - 23 Aug 2024
Viewed by 839
Abstract
Copper is known to have toxic effects on bacterial growth. This study aimed to determine the influence of copper ions on Oleidesulfovibrio alaskensis G20 biofilm formation in a lactate-C medium supplemented with variable copper ion concentrations. OA G20, when grown in media supplemented [...] Read more.
Copper is known to have toxic effects on bacterial growth. This study aimed to determine the influence of copper ions on Oleidesulfovibrio alaskensis G20 biofilm formation in a lactate-C medium supplemented with variable copper ion concentrations. OA G20, when grown in media supplemented with high copper ion concentrations of 5, 15, and 30 µM, exhibited inhibited growth in its planktonic state. Conversely, under similar copper concentrations, OA G20 demonstrated enhanced biofilm formation on glass coupons. Microscopic studies revealed that biofilms exposed to copper stress demonstrated a change in cellular morphology and more accumulation of carbohydrates and proteins than controls. Consistent with these findings, sulfur (dsrA, dsrB, sat, aprA) and electron transport (NiFeSe, NiFe, ldh, cyt3) genes, polysaccharide synthesis (poI), and genes involved in stress response (sodB) were significantly upregulated in copper-induced biofilms, while genes (ftsZ, ftsA, ftsQ) related to cellular division were negatively regulated compared to controls. These results indicate that the presence of copper ions triggers alterations in cellular morphology and gene expression levels in OA G20, impacting cell attachment and EPS production. This adaptation, characterized by increased biofilm formation, represents a crucial strategy employed by OA G20 to resist metal ion stress. Full article
(This article belongs to the Special Issue Advances in Microbial Biofilm Formation)
Show Figures

Figure 1

17 pages, 5247 KiB  
Article
Biofilm Formation, Motility, and Virulence of Listeria monocytogenes Are Reduced by Deletion of the Gene lmo0159, a Novel Listerial LPXTG Surface Protein
by Weidi Shi, Qiwen Zhang, Honghuan Li, Dongdong Du, Xun Ma, Jing Wang, Jianjun Jiang, Caixia Liu, Lijun Kou and Jingjing Ren
Microorganisms 2024, 12(7), 1354; https://doi.org/10.3390/microorganisms12071354 - 2 Jul 2024
Cited by 1 | Viewed by 1372
Abstract
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that causes listeriosis in humans and other animals. Surface proteins with the LPXTG motif have important roles in the virulence of L. monocytogenes. Lmo0159 is one such protein, but little is known [...] Read more.
Listeria monocytogenes (L. monocytogenes) is a foodborne pathogen that causes listeriosis in humans and other animals. Surface proteins with the LPXTG motif have important roles in the virulence of L. monocytogenes. Lmo0159 is one such protein, but little is known about its role in L. monocytogenes virulence, motility, and biofilm formation. Here, we constructed and characterized a deletion mutant of lmo0159 (∆lmo0159). We analyzed not only the capacity of biofilm formation, motility, attachment, and intracellular growth in different cell types but also LD50; bacterial load in mice’s liver, spleen, and brain; expression of virulence genes; and survival time of mice after challenge. The results showed that the cross-linking density of the biofilm of ∆lmo0159 strain was lower than that of WT by microscopic examination. The expression of biofilm-formation and virulence genes also decreased in the biofilm state. Subsequently, the growth and motility of ∆lmo0159 in the culture medium were enhanced. Conversely, the growth and motility of L. monocytogenes were attenuated by ∆lmo0159 at both the cellular and mouse levels. At the cellular level, ∆lmo0159 reduced plaque size; accelerated scratch healing; and attenuated the efficiency of adhesion, invasion, and intracellular proliferation in swine intestinal epithelial cells (SIEC), RAW264.7, mouse-brain microvascular endothelial cells (mBMEC), and human-brain microvascular endothelial cells (hCMEC/D3). The expression of virulence genes was also inhibited. At the mouse level, the LD50 of the ∆lmo0159 strain was 100.97 times higher than that of the WT strain. The bacterial load of the ∆lmo0159 strain in the liver and spleen was lower than that of the WT strain. In a mouse model of intraperitoneal infection, the deletion of the lmo0159 gene significantly prolonged the survival time of the mice, suggesting that the lmo0159 deletion mutant also exhibited reduced virulence. Thus, our study identified lmo0159 as a novel virulence factor among L. monocytogenes LPXTG proteins. Full article
(This article belongs to the Special Issue Advances in Microbial Biofilm Formation)
Show Figures

Figure 1

17 pages, 4259 KiB  
Article
Genetic Insights into Biofilm Formation by a Pathogenic Strain of Vibrio harveyi
by Amandine Morot, François Delavat, Alexis Bazire, Christine Paillard, Alain Dufour and Sophie Rodrigues
Microorganisms 2024, 12(1), 186; https://doi.org/10.3390/microorganisms12010186 - 17 Jan 2024
Viewed by 1878
Abstract
The Vibrio genus includes bacteria widely distributed in aquatic habitats and the infections caused by these bacteria can affect a wide range of hosts. They are able to adhere to numerous surfaces, which can result in biofilm formation that helps maintain them in [...] Read more.
The Vibrio genus includes bacteria widely distributed in aquatic habitats and the infections caused by these bacteria can affect a wide range of hosts. They are able to adhere to numerous surfaces, which can result in biofilm formation that helps maintain them in the environment. The involvement of the biofilm lifestyle in the virulence of Vibrio pathogens of aquatic organisms remains to be investigated. Vibrio harveyi ORM4 is a pathogen responsible for an outbreak in European abalone Haliotis tuberculata populations. In the present study, we used a dynamic biofilm culture technique coupled with laser scanning microscopy to characterize the biofilm formed by V. harveyi ORM4. We furthermore used RNA-seq analysis to examine the global changes in gene expression in biofilm cells compared to planktonic bacteria, and to identify biofilm- and virulence-related genes showing altered expression. A total of 1565 genes were differentially expressed, including genes associated with motility, polysaccharide synthesis, and quorum sensing. The up-regulation of 18 genes associated with the synthesis of the type III secretion system suggests that this virulence factor is induced in V. harveyi ORM4 biofilms, providing indirect evidence of a relationship between biofilm and virulence. Full article
(This article belongs to the Special Issue Advances in Microbial Biofilm Formation)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 1512 KiB  
Review
Review of the Impact of Biofilm Formation on Recurrent Clostridioides difficile Infection
by Daira Rubio-Mendoza, Adrián Martínez-Meléndez, Héctor Jesús Maldonado-Garza, Carlos Córdova-Fletes and Elvira Garza-González
Microorganisms 2023, 11(10), 2525; https://doi.org/10.3390/microorganisms11102525 - 10 Oct 2023
Cited by 6 | Viewed by 2501
Abstract
Clostridioides difficile infection (CDI) may recur in approximately 10–30% of patients, and the risk of recurrence increases with each successive recurrence, reaching up to 65%. C. difficile can form biofilm with approximately 20% of the bacterial genome expressed differently between biofilm and planktonic [...] Read more.
Clostridioides difficile infection (CDI) may recur in approximately 10–30% of patients, and the risk of recurrence increases with each successive recurrence, reaching up to 65%. C. difficile can form biofilm with approximately 20% of the bacterial genome expressed differently between biofilm and planktonic cells. Biofilm plays several roles that may favor recurrence; for example, it may act as a reservoir of spores, protect the vegetative cells from the activity of antibiotics, and favor the formation of persistent cells. Moreover, the expression of several virulence genes, including TcdA and TcdB toxins, has been associated with recurrence. Several systems and structures associated with adhesion and biofilm formation have been studied in C. difficile, including cell-wall proteins, quorum sensing (including LuxS and Agr), Cyclic di-GMP, type IV pili, and flagella. Most antibiotics recommended for the treatment of CDI do not have activity on spores and do not eliminate biofilm. Therapeutic failure in R-CDI has been associated with the inadequate concentration of drugs in the intestinal tract and the antibiotic resistance of a biofilm. This makes it challenging to eradicate C. difficile in the intestine, complicating antibacterial therapies and allowing non-eliminated spores to remain in the biofilm, increasing the risk of recurrence. In this review, we examine the role of biofilm on recurrence and the challenges of treating CDI when the bacteria form a biofilm. Full article
(This article belongs to the Special Issue Advances in Microbial Biofilm Formation)
Show Figures

Figure 1

Back to TopTop