Genetic Insights into Biofilm Formation by a Pathogenic Strain of Vibrio harveyi
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Culture Medium
2.2. Planktonic Growth
2.3. Biofilm Culture
2.4. Confocal Laser Scanning Microscopy (CLSM)
2.5. RNA Extraction
2.6. RNA-Sequencing and Data Analysis
2.7. mRNA Quantification by Reverse Transcription Followed by Quantitative PCR (RT-qPCR)
3. Results and Discussion
3.1. Biofilm Formation by V. harveyi
3.1.1. V. harveyi ORM4-GFP Biofilm Presents a Non-Uniform Structure
3.1.2. Matrix Component Distribution
3.2. Transcriptomic Comparison between Planktonic and Biofilm Cells
3.3. Differential Expression Analysis of Biofilm- and Virulence-Related Genes
3.3.1. DEGs Involved in Motility and Attachment
3.3.2. DEGs Involved in Polysaccharide Production
3.3.3. Genes Involved in Quorum Sensing
3.3.4. Type III Secretion System (T3SS)-Associated Genes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Thompson, F.L.; Iida, T.; Swings, J. Biodiversity of Vibrios. Microbiol. Mol. Biol. Rev. 2004, 68, 403–431. [Google Scholar] [CrossRef]
- Li, L.; Mendis, N.; Trigui, H.; Oliver, J.D.; Faucher, S.P. The Importance of the Viable but Non-Culturable State in Human Bacterial Pathogens. Front. Microbiol. 2014, 5, 258. [Google Scholar] [CrossRef]
- Hung, D.T.; Zhu, J.; Sturtevant, D.; Mekalanos, J.J. Bile Acids Stimulate Biofilm Formation in Vibrio cholerae. Mol. Microbiol. 2006, 59, 193–201. [Google Scholar] [CrossRef]
- He, H.; Cooper, J.N.; Mishra, A.; Raskin, D.M. Stringent Response Regulation of Biofilm Formation in Vibrio cholerae. J. Bacteriol. 2012, 194, 2962–2972. [Google Scholar] [CrossRef]
- Beloin, C.; Ghigo, J.-M. Finding Gene-Expression Patterns in Bacterial Biofilms. Trends Microbiol. 2005, 13, 16–19. [Google Scholar] [CrossRef]
- Rodrigues, S.; Paillard, C.; Van Dillen, S.; Tahrioui, A.; Berjeaud, J.-M.; Dufour, A.; Bazire, A. Relation between Biofilm and Virulence in Vibrio tapetis: A Transcriptomic Study. Pathogens 2018, 7, 92. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, P.; Liu, P.; Ou, J. Comparative Transcriptome Analysis Reveals Regulatory Factors Involved in Vibrio parahaemolyticus Biofilm Formation. Front. Cell. Infect. Microbiol. 2022, 12, 917131. [Google Scholar] [CrossRef]
- Frischkorn, K.R.; Stojanovski, A.; Paranjpye, R. Vibrio Parahaemolyticus Type IV Pili Mediate Interactions with Diatom-Derived Chitin and Point to an Unexplored Mechanism of Environmental Persistence: V. parahaemolyticus and Chitin. Environ. Microbiol. 2013, 15, 1416–1427. [Google Scholar] [CrossRef]
- Luo, G.; Huang, L.; Su, Y.; Qin, Y.; Xu, X.; Zhao, L.; Yan, Q. flrA, flrB and flrC Regulate Adhesion by Controlling the Expression of Critical Virulence Genes in Vibrio alginolyticus. Emerg. Microbes Infect. 2016, 5, e85. [Google Scholar] [CrossRef]
- Aagesen, A.M.; Phuvasate, S.; Su, Y.-C.; Häse, C.C. Persistence of Vibrio parahaemolyticus in the Pacific Oyster, Crassostrea gigas, Is a Multifactorial Process Involving Pili and Flagella but Not Type III Secretion Systems or Phase Variation. Appl. Environ. Microbiol. 2013, 79, 3303–3305. [Google Scholar] [CrossRef]
- Yildiz, F.H.; Schoolnik, G.K. Vibrio cholerae O1 El Tor: Identification of a Gene Cluster Required for the Rugose Colony Type, Exopolysaccharide Production, Chlorine Resistance, and Biofilm Formation. Proc. Natl. Acad. Sci. USA 1999, 96, 4028–4033. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, F.H.; Visick, K.L. Vibrio Biofilms: So Much the Same yet so Different. Trends Microbiol. 2009, 17, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Limoli, D.H.; Jones, C.J.; Wozniak, D.J. Bacterial Extracellular Polysaccharides in Biofilm Formation and Function. Microbiol. Spectr. 2017, 3, 223–247. [Google Scholar]
- Ruhal, R.; Kataria, R. Biofilm Patterns in Gram-Positive and Gram-Negative Bacteria. Microbiol. Res. 2021, 251, 126829. [Google Scholar] [CrossRef]
- Güvener, Z.T.; McCarter, L.L. Multiple Regulators Control Capsular Polysaccharide Production in Vibrio parahaemolyticus. J. Bacteriol. 2003, 185, 5431–5441. [Google Scholar] [CrossRef]
- Enos-Berlage, J.L.; McCarter, L.L. Relation of Capsular Polysaccharide Production and Colonial Cell Organization to Colony Morphology in Vibrio parahaemolyticus. J. Bacteriol. 2000, 182, 5513–5520. [Google Scholar] [CrossRef]
- Enos-Berlage, J.L.; Guvener, Z.T.; Keenan, C.E.; McCarter, L.L. Genetic Determinants of Biofilm Development of Opaque and Translucent Vibrio parahaemolyticus: V. parahaemolyticus Biofilm Development. Mol. Microbiol. 2004, 55, 1160–1182. [Google Scholar] [CrossRef]
- Yip, E.S.; Grublesky, B.T.; Hussa, E.A.; Visick, K.L. A Novel, Conserved Cluster of Genes Promotes Symbiotic Colonization and σ54-Dependent Biofilm Formation by Vibrio fischeri: Syp, a Novel Symbiosis Locus in Vibrio fischeri. Mol. Microbiol. 2005, 57, 1485–1498. [Google Scholar] [CrossRef] [PubMed]
- Yip, E.S.; Geszvain, K.; DeLoney-Marino, C.R.; Visick, K.L. The Symbiosis Regulator RscS Controls the Syp Gene Locus, Biofilm Formation and Symbiotic Aggregation by Vibrio fischeri. Mol. Microbiol. 2006, 62, 1586–1600. [Google Scholar] [CrossRef]
- Shibata, S.; Yip, E.S.; Quirke, K.P.; Ondrey, J.M.; Visick, K.L. Roles of the Structural Symbiosis Polysaccharide (syp) Genes in Host Colonization, Biofilm Formation, and Polysaccharide Biosynthesis in Vibrio fischeri. J. Bacteriol. 2012, 194, 6736–6747. [Google Scholar] [CrossRef]
- Millet, Y.A.; Alvarez, D.; Ringgaard, S.; Von Andrian, U.H.; Davis, B.M.; Waldor, M.K. Insights into Vibrio cholerae Intestinal Colonization from Monitoring Fluorescently Labeled Bacteria. PLoS Pathog. 2014, 10, e1004405. [Google Scholar] [CrossRef]
- Faruque, S.M.; Biswas, K.; Udden, S.M.N.; Ahmad, Q.S.; Sack, D.A.; Nair, G.B.; Mekalanos, J.J. Transmissibility of Cholera: In vivo-Formed Biofilms and Their Relationship to Infectivity and Persistence in the Environment. Proc. Natl. Acad. Sci. USA 2006, 103, 6350–6355. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, R.; Patimalla, B.; Camilli, A. Growth in a Biofilm Induces a Hyperinfectious Phenotype in Vibrio cholerae. Infect. Immun. 2010, 78, 3560–3569. [Google Scholar] [CrossRef]
- Gallego-Hernandez, A.L.; DePas, W.H.; Park, J.H.; Teschler, J.K.; Hartmann, R.; Jeckel, H.; Drescher, K.; Beyhan, S.; Newman, D.K.; Yildiz, F.H. Upregulation of Virulence Genes Promotes Vibrio cholerae Biofilm Hyperinfectivity. Proc. Natl. Acad. Sci. USA 2020, 117, 11010–11017. [Google Scholar] [CrossRef] [PubMed]
- Vidakovic, L.; Mikhaleva, S.; Jeckel, H.; Nisnevich, V.; Strenger, K.; Neuhaus, K.; Raveendran, K.; Ben-Moshe, N.B.; Aznaourova, M.; Nosho, K.; et al. Biofilm Formation on Human Immune Cells Is a Multicellular Predation Strategy of Vibrio cholerae. Cell 2023, 186, 2690–2704. [Google Scholar] [CrossRef] [PubMed]
- Austin, B.; Zhang, X.-H. Vibrio harveyi: A Significant Pathogen of Marine Vertebrates and Invertebrates. Lett. Appl. Microbiol. 2006, 43, 119–124. [Google Scholar] [CrossRef]
- Darshanee Ruwandeepika, H.A.; Sanjeewa Prasad Jayaweera, T.; Paban Bhowmick, P.; Karunasagar, I.; Bossier, P.; Defoirdt, T. Pathogenesis, Virulence Factors and Virulence Regulation of Vibrios Belonging to the Harveyi Clade: Virulence and Pathogenesis of Vibrios. Rev. Aquac. 2012, 4, 59–74. [Google Scholar] [CrossRef]
- Nicolas, J.; Basuyaux, O.; Mazurié, J.; Thébault, A. Vibrio carchariae, a Pathogen of the Abalone Haliotis tuberculata. Dis. Aquat. Org. 2002, 50, 35–43. [Google Scholar] [CrossRef]
- Cardinaud, M.; Barbou, A.; Capitaine, C.; Bidault, A.; Dujon, A.M.; Moraga, D.; Paillard, C. Vibrio harveyi Adheres to and Penetrates Tissues of the European Abalone Haliotis tuberculata within the First Hours of Contact. Appl. Environ. Microbiol. 2014, 80, 6328–6333. [Google Scholar] [CrossRef]
- Travers, M.-A.; Le Goïc, N.; Huchette, S.; Koken, M.; Paillard, C. Summer Immune Depression Associated with Increased Susceptibility of the European Abalone, Haliotis tuberculata to Vibrio harveyi Infection. Fish Shellfish. Immunol. 2008, 25, 800–808. [Google Scholar] [CrossRef]
- Cardinaud, M.; Dheilly, N.M.; Huchette, S.; Moraga, D.; Paillard, C. The Early Stages of the Immune Response of the European Abalone Haliotis tuberculata to a Vibrio harveyi Infection. Dev. Comp. Immunol. 2015, 51, 287–297. [Google Scholar] [CrossRef]
- Morot, A.; El Fekih, S.; Bidault, A.; Le Ferrand, A.; Jouault, A.; Kavousi, J.; Bazire, A.; Pichereau, V.; Dufour, A.; Paillard, C.; et al. Virulence of Vibrio harveyi ORM4 towards the European Abalone Haliotis tuberculata Involves Both Quorum Sensing and a Type III Secretion System. Environ. Microbiol. 2021, 23, 5273–5288. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical Review on Biofilm Methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef] [PubMed]
- Tolker-Nielsen, T.; Sternberg, C. Methods for Studying Biofilm Formation: Flow Cells and Confocal Laser Scanning Microscopy. In Pseudomonas Methods and Protocols; Filloux, A., Ramos, J.-L., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2014; Volume 1149, pp. 615–629. ISBN 978-1-4939-0472-3. [Google Scholar]
- Weiss Nielsen, M.; Sternberg, C.; Molin, S.; Regenberg, B. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells. J. Vis. Exp. 2011, 15, 2383. [Google Scholar]
- Chen, M.-Y.; Lee, D.-J.; Tay, J.-H.; Show, K.-Y. Staining of Extracellular Polymeric Substances and Cells in Bioaggregates. Appl. Microbiol. Biotechnol. 2007, 75, 467–474. [Google Scholar] [CrossRef]
- Allesen-Holm, M.; Barken, K.B.; Yang, L.; Klausen, M.; Webb, J.S.; Kjelleberg, S.; Molin, S.; Givskov, M.; Tolker-Nielsen, T. A Characterization of DNA Release in Pseudomonas aeruginosa Cultures and Biofilms. Mol. Microbiol. 2006, 59, 1114–1128. [Google Scholar] [CrossRef] [PubMed]
- Heydorn, A.; Nielsen, A.T.; Hentzer, M.; Sternberg, C.; Givskov, M.; Ersbøll, B.K.; Molin, S. Quantification of Biofilm Structures by the Novel Computer Program Comstat. Microbiology 2000, 146, 2395–2407. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on September 2022).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python Framework to Work with High-Throughput Sequencing Data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Varet, H.; Brillet-Guéguen, L.; Coppée, J.-Y.; Dillies, M.-A. SARTools: A DESeq2- and EdgeR-Based R Pipeline for Comprehensive Differential Analysis of RNA-Seq Data. PLoS ONE 2016, 11, e0157022. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24275-0. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Morot, A. Elucidation des Mécanismes Moléculaires de Colonisation D’organismes Marins par le Pathogène Vibrio harveyi. Ph.D. Thesis, Université Bretagne Sud, Lorient, France, 2023. [Google Scholar]
- Bilecen, K.; Yildiz, F.H. Identification of a Calcium-Controlled Negative Regulatory System Affecting Vibrio cholerae Biofilm Formation. Environl. Microbiol. 2009, 11, 2015–2029. [Google Scholar] [CrossRef]
- Rodrigues, S.; Paillard, C.; Le Pennec, G.; Dufour, A.; Bazire, A. Vibrio tapetis, the Causative Agent of Brown Ring Disease, Forms Biofilms with Spherical Components. Front. Microbiol. 2015, 6, 1384. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, J.J.; Qian, H.; Tan, L.; Zhang, Z.; Liu, H.; Pan, Y.; Zhao, Y. Insights into the Role of Extracellular DNA and Extracellular Proteins in Biofilm Formation of Vibrio parahaemolyticus. Front. Microbiol. 2020, 11, 813. [Google Scholar] [CrossRef] [PubMed]
- Fong, J.C.N.; Karplus, K.; Schoolnik, G.K.; Yildiz, F.H. Identification and Characterization of RbmA, a Novel Protein Required for the Development of Rugose Colony Morphology and Biofilm Structure in Vibrio cholerae. J. Bacteriol. 2006, 188, 1049–1059. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- Henares, B.; Xu, Y.; Boon, E. A Nitric Oxide-Responsive Quorum Sensing Circuit in Vibrio harveyi Regulates Flagella Production and Biofilm Formation. Int. J. Mol. Sci. 2013, 14, 16473–16484. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Duong-Nu, T.-M.; Jeong, K.; Hong, S.H.; Puth, S.; Kim, S.Y.; Tan, W.; Lee, K.H.; Lee, S.E.; Rhee, J.H. A Stealth Adhesion Factor Contributes to Vibrio vulnificus Pathogenicity: Flp Pili Play Roles in Host Invasion, Survival in the Blood Stream and Resistance to Complement Activation. PLoS Pathog. 2019, 15, e1007767. [Google Scholar] [CrossRef] [PubMed]
- Papenfort, K.; Bassler, B.L. Quorum Sensing Signal–Response Systems in Gram-Negative Bacteria. Nat. Rev. Microbiol. 2016, 14, 576–588. [Google Scholar] [CrossRef]
- Kaur, D.; Mukhopadhaya, A. Outer Membrane Protein OmpV Mediates Salmonella enterica Serovar Typhimurium Adhesion to Intestinal Epithelial Cells via Fibronectin and α1β1 Integrin. Cell. Microbiol. 2020, 22, e13172. [Google Scholar] [CrossRef]
- Izoré, T.; Job, V.; Dessen, A. Biogenesis, Regulation, and Targeting of the Type III Secretion System. Structure 2011, 19, 603–612. [Google Scholar] [CrossRef]
- Broberg, C.A.; Zhang, L.; Gonzalez, H.; Laskowski-Arce, M.A.; Orth, K. A Vibrio Effector Protein Is an Inositol Phosphatase and Disrupts Host Cell Membrane Integrity. Science 2010, 329, 1660–1662. [Google Scholar] [CrossRef]
- Whiteley, M.; Bangera, M.G.; Bumgarner, R.E.; Parsek, M.R.; Teitzel, G.M.; Lory, S.; Greenberg, E.P. Gene Expression in Pseudomonas aeruginosa Biofilms. Nature 2001, 413, 860–864. [Google Scholar] [CrossRef]
- Guttenplan, S.B.; Kearns, D.B. Regulation of Flagellar Motility during Biofilm Formation. FEMS Microbiol. Rev. 2013, 37, 849–871. [Google Scholar] [CrossRef]
- Marsh, J.W.; Taylor, R.K. Genetic and Transcriptional Analyses of the Vibrio cholerae Mannose-Sensitive Hemagglutinin Type 4 Pilus Gene Locus. J. Bacteriol. 1999, 181, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Meibom, K.L.; Li, X.B.; Nielsen, A.T.; Wu, C.-Y.; Roseman, S.; Schoolnik, G.K. The Vibrio cholerae Chitin Utilization Program. Proc. Natl. Acad. Sci. USA 2004, 101, 2524–2529. [Google Scholar] [CrossRef] [PubMed]
- Watnick, P.I.; Fullner, K.J.; Kolter, R. A Role for the Mannose-Sensitive Hemagglutinin in Biofilm Formation by Vibrio cholerae El Tor. J. Bacteriol. 1999, 181, 3606–3609. [Google Scholar] [CrossRef]
- Hospenthal, M.K.; Costa, T.R.D.; Waksman, G. A Comprehensive Guide to Pilus Biogenesis in Gram-Negative Bacteria. Nat. Rev. Microbiol. 2017, 15, 365–379. [Google Scholar] [CrossRef]
- Watnick, P.I.; Lauriano, C.M.; Klose, K.E.; Croal, L.; Kolter, R. The Absence of a Flagellum Leads to Altered Colony Morphology, Biofilm Development and Virulence in Vibrio cholerae O139. Mol. Microbiol. 2001, 39, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Paranjpye, R.N.; Strom, M.S. A Vibrio vulnificus Type IV Pilin Contributes to Biofilm Formation, Adherence to Epithelial Cells, and Virulence. Infect. Immun. 2005, 73, 1411–1422. [Google Scholar] [CrossRef]
- Vallenet, D.; Calteau, A.; Dubois, M.; Amours, P.; Bazin, A.; Beuvin, M.; Burlot, L.; Bussell, X.; Fouteau, S.; Gautreau, G.; et al. MicroScope: An Integrated Platform for the Annotation and Exploration of Microbial Gene Functions through Genomic, Pangenomic and Metabolic Comparative Analysis. Nucleic Acids Res. 2020, 48, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Tomich, M.; Planet, P.J.; Figurski, D.H. The Tad Locus: Postcards from the Widespread Colonization Island. Nat. Rev. Microbiol. 2007, 5, 363–375. [Google Scholar] [CrossRef]
- Pu, M.; Rowe-Magnus, D.A. A Tad Pilus Promotes the Establishment and Resistance of Vibrio vulnificus Biofilms to Mechanical Clearance. NPJ Biofilms Microbiomes 2018, 4, 10. [Google Scholar] [CrossRef]
- Van Schaik, E.J.; Giltner, C.L.; Audette, G.F.; Keizer, D.W.; Bautista, D.L.; Slupsky, C.M.; Sykes, B.D.; Irvin, R.T. DNA Binding: A Novel Function of Pseudomonas aeruginosa Type IV Pili. J. Bacteriol. 2005, 187, 1455–1464. [Google Scholar] [CrossRef]
- Zogaj, X.; Nimtz, M.; Rohde, M.; Bokranz, W.; Romling, U. The Multicellular Morphotypes of Salmonella Typhimurium and Escherichia coli Produce Cellulose as the Second Component of the Extracellular Matrix. Mol. Microbiol. 2001, 39, 1452–1463. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.R.; Visick, K.L. Control of Biofilm Formation and Colonization in Vibrio fischeri: A Role for Partner Switching?: Partner Switching in Vibrio fischeri. Environ. Microbiol. 2010, 12, 2051–2059. [Google Scholar] [CrossRef]
- Morris, A.R.; Visick, K.L. Inhibition of SypG-Induced Biofilms and Host Colonization by the Negative Regulator SypE in Vibrio fischeri. PLoS ONE 2013, 8, e60076. [Google Scholar] [CrossRef]
- Ludvik, D.A.; Bultman, K.M.; Mandel, M.J. Hybrid Histidine Kinase BinK Represses Vibrio Fischeri Biofilm Signaling at Multiple Developmental Stages. J. Bacteriol. 2021, 203, e0015521. [Google Scholar] [CrossRef]
- Tsuneda, S.; Aikawa, H.; Hayashi, H.; Yuasa, A.; Hirata, A. Extracellular Polymeric Substances Responsible for Bacterial Adhesion onto Solid Surface. FEMS Microbiol. Lett. 2003, 223, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Sharma, P.K.; Busscher, H.J.; Van Der Mei, H.C.; Krom, B.P. Role of Extracellular DNA in Initial Bacterial Adhesion and Surface Aggregation. Appl. Environ. Microbiol. 2010, 76, 3405–3408. [Google Scholar] [CrossRef]
- Nealson, K.H.; Platt, T.; Hastings, J.W. Cellular Control of the Synthesis and Activity of the Bacterial Luminescent System. J. Bacteriol. 1970, 104, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.B. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001, 55, 165–199. [Google Scholar] [CrossRef]
- Zhou, X.; Konkel, M.E.; Call, D.R. Regulation of Type III Secretion System 1 Gene Expression in Vibrio parahaemolyticus Is Dependent on Interactions between ExsA, ExsC, and ExsD. Virulence 2010, 1, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Deng, Y.; Feng, J.; Guo, Z.; Chen, H.; Wang, B.; Hu, J.; Lin, Z.; Su, Y. Functional Characterization of VscCD, an Important Component of the Type III Secretion System of Vibrio harveyi. Microb. Pathog. 2021, 157, 104965. [Google Scholar] [CrossRef]
- Casselli, T.; Lynch, T.; Southward, C.M.; Jones, B.W.; DeVinney, R. Vibrio parahaemolyticus Inhibition of Rho Family GTPase Activation Requires a Functional Chromosome I Type III Secretion System. Infect. Immun. 2008, 76, 2202–2211. [Google Scholar] [CrossRef] [PubMed]
- Ono, T.; Park, K.-S.; Ueta, M.; Iida, T.; Honda, T. Identification of Proteins Secreted via Vibrio parahaemolyticus Type III Secretion System 1. Infect. Immun. 2006, 74, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Green, E.R.; Mecsas, J. Bacterial Secretion Systems: An Overview. Virul. Mech. Bact. Pathog. 2016, 4, 213–239. [Google Scholar]
- Chen, L.; Zou, Y.; Kronfl, A.A.; Wu, Y. Type VI Secretion System of Pseudomonas aeruginosa Is Associated with Biofilm Formation but Not Environmental Adaptation. MicrobiologyOpen 2020, 9, e991. [Google Scholar] [CrossRef] [PubMed]
- Gallique, M.; Decoin, V.; Barbey, C.; Rosay, T.; Feuilloley, M.G.J.; Orange, N.; Merieau, A. Contribution of the Pseudomonas fluorescens MFE01 Type VI Secretion System to Biofilm Formation. PLoS ONE 2017, 12, e0170770. [Google Scholar] [CrossRef]
- Salomon, D.; Guo, Y.; Kinch, L.N.; Grishin, N.V.; Gardner, K.H.; Orth, K. Effectors of Animal and Plant Pathogens Use a Common Domain to Bind Host Phosphoinositides. Nat. Commun. 2013, 4, 2973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Krachler, A.M.; Broberg, C.A.; Li, Y.; Mirzaei, H.; Gilpin, C.J.; Orth, K. Type III Effector VopC Mediates Invasion for Vibrio Species. Cell Rep. 2012, 1, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, J.; Deng, Y.; Huang, W.; Ren, C.; Call, D.R.; Hu, C. The Vibrio alginolyticus T3SS Effectors, Val1686 and Val1680, Induce Cell Rounding, Apoptosis and Lysis of Fish Epithelial Cells. Virulence 2018, 9, 318–330. [Google Scholar] [CrossRef]
Primer Name | 5′-3′ Sequence | Amplified Gene (ID) |
---|---|---|
ARNr16S-F | TGCGCTTTACGCCCAGTAAT | rRNA 16S |
ARNr16S-R | GGTAATACGGAGGGTGCGAG | |
flp-F | CGAGGTGTAACCGCTGTTGAA | flp (HORM4_610121) |
flp-R | TGATGACATTGCAACAGCGA | |
Vscn-F | CCTCGTCGTGTTGGTGGTTC | vscN (HORM4_240127) |
Vscn-R | AGCTCAGCGTGAGATTGGCT | |
VPA0450-F | TCGCTGAGGTCACATCATCAA | vpa0450 (HORM4_520123) |
VPA0450-R | AGCCTGATACTGATCCGGCA | |
luxR-F | TGTTTTGCACCAGCAGTTGG | luxR (HORM4_420032) |
luxR-R | GGCCGCTATTCGTAACGACA | |
ompV-F | CATCGTTGTCACCTAGGAAACG | ompV (HORM4_1070102) |
ompV-R | TCAACGCTGATTTAGGCGGT | |
sypH-F | CGTCAAGGATGAGCCTTACGA | sypH (HORM4_640016) |
sypH-R | GCCTCACGTCCCGTTTCTAC | |
920008-F | GACCTTCGTCAGACCCAACG | HORM4_920008 |
920008-R | TATCGGCTGGTGCAGTTGC | |
1130010-F | TCAAATAGAAGAGTTGGCTGCG | HORM4_1130010 |
1130010-R | GGACCAAAAATCCCTTTCACG |
Gene ID | Gene Name | COG | FC | Log2FC | Product |
---|---|---|---|---|---|
HORM4_640012 | sypB | M | 0.1 | −3 | Outer membrane protein |
HORM4_640013 | sypC | M | 0.2 | −2.7 | Polysaccharide export periplasmic protein |
HORM4_640014 | sypD | M | 0.2 | −2 | Chromosome partitioning ATPase |
HORM4_640016 | sypG | T | 0.2 | −2.7 | Sigma-54 dependent transcriptional regulator |
HORM4_640017 | sypH | M | 0.3 | −2 | Glycosyl transferases group 1 |
Gene ID | Gene Name | COG | FC | Log2FC | Product |
---|---|---|---|---|---|
HORM4_830068 | cqsA | E | Not DEG | CAI-1 autoinducer synthase | |
HORM4_830069 | cqsS | T | 0.6 | −0.7 | CAI-1 autoinducer sensor kinase/phosphatase CqsS |
HORM4_530027 | luxM | T | Not DEG | Acyl-homoserine-lactone synthase LuxM | |
HORM4_530026 | luxN | T | Not DEG | Autoinducer 1 sensor kinase/phosphatase LuxN | |
HORM4_420009 | luxS | T | Not DEG | S-ribosylhomocysteinase | |
HORM4_930034 | luxP | G | Not DEG | Autoinducer 2-binding periplasmic protein LuxP | |
HORM4_930033 | luxQ | T | Not DEG | Autoinducer 2 sensor kinase/phosphatase LuxQ | |
HORM4_520007 | luxU | T | Not DEG | Phosphorelay protein LuxU | |
HORM4_520006 | luxO | T | 0.6 | −0.8 | Transcriptional regulator LuxO |
HORM4_420032 | luxR | K | 0.6 | −0.8 | Transcriptional regulator LuxR |
Gene ID | Gene Name | COG | FC | Log2FC | Product |
---|---|---|---|---|---|
HORM4_240099 | vscB | O | 3.3 | 1.7 | T3SS chaperone, YscB family |
HORM4_240100 | vscC | U | 2.7 | 1.4 | T3SS secretin (VscC) |
HORM4_240101 | vscD | S | 2.2 | 1.1 | T3SS inner membrane ring protein (VscD) |
HORM4_240103 | vscF | U | 2.8 | 1.5 | Needle major subunit (VscF) |
HORM4_240104 | vscG | S | 3.1 | 1.6 | T3SS chaperone (VscG) |
HORM4_240105 | vscH | S | 3.8 | 1.9 | T3SS effector, YopR family |
HORM4_240106 | vscI | S | 3.1 | 1.6 | T3SS inner rod protein (VscI) |
HORM4_240107 | vscJ | U | 2.1 | 1.1 | T3SS bridge between inner and outer membrane lipoprotein (VscJ) |
HORM4_240109 | vscL | N | 2.7 | 1.4 | Yop proteins translocation protein L (VscL) |
HORM4_240121 | vscT | U | 1.9 | 0.9 | T3SS inner membrane protein (VscT) |
HORM4_240123 | vscR | U | 2 | 1 | T3SS inner membrane protein (VscR) |
HORM4_240124 | vscQ | N | 2.6 | 1.4 | T3SS inner membrane protein (VscQ) |
HORM4_240126 | vscO | U | 2.3 | 1.2 | Putative T3SS chaperone (VscO) |
HORM4_240127 | vscN | N | 3.5 | 1.8 | ATPase (VscN) |
HORM4_240128 | yopN | S | 2.1 | 1.1 | T3SS secretion regulator (YopN) |
HORM4_240130 | sycN | S | 2 | 1 | T3SS chaperone (SycN) |
HORM4_240131 | vscX | U | 2.6 | 1.4 | Putative type III secretion protein (VscX) |
HORM4_240133 | vcrD | U | 2.8 | 1.5 | Low calcium response protein (VcrD) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morot, A.; Delavat, F.; Bazire, A.; Paillard, C.; Dufour, A.; Rodrigues, S. Genetic Insights into Biofilm Formation by a Pathogenic Strain of Vibrio harveyi. Microorganisms 2024, 12, 186. https://doi.org/10.3390/microorganisms12010186
Morot A, Delavat F, Bazire A, Paillard C, Dufour A, Rodrigues S. Genetic Insights into Biofilm Formation by a Pathogenic Strain of Vibrio harveyi. Microorganisms. 2024; 12(1):186. https://doi.org/10.3390/microorganisms12010186
Chicago/Turabian StyleMorot, Amandine, François Delavat, Alexis Bazire, Christine Paillard, Alain Dufour, and Sophie Rodrigues. 2024. "Genetic Insights into Biofilm Formation by a Pathogenic Strain of Vibrio harveyi" Microorganisms 12, no. 1: 186. https://doi.org/10.3390/microorganisms12010186
APA StyleMorot, A., Delavat, F., Bazire, A., Paillard, C., Dufour, A., & Rodrigues, S. (2024). Genetic Insights into Biofilm Formation by a Pathogenic Strain of Vibrio harveyi. Microorganisms, 12(1), 186. https://doi.org/10.3390/microorganisms12010186