Formation, Microstructure, and Properties of Light Alloys

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Casting, Forming and Heat Treatment".

Deadline for manuscript submissions: closed (31 July 2025) | Viewed by 391

Special Issue Editor

School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Interests: solidification; welding; light metals
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue on the “Formation, Microstructure, and Properties of Light Alloys” explores advancements and challenges pertaining to light metal alloys, focusing on their formation processes, microstructural evolution, and resultant mechanical properties. The issue emphasizes the latest research on alloy compositions, processing techniques, and their impact on performance in applications such as aerospace, automotive, and structural engineering. Special attention is given to the role of microstructure in dictating material properties, including strength, ductility, and fatigue resistance. Moreover, it discusses the integration of novel fabrication technologies, such as additive manufacturing and advanced forging, in improving the formability and functionality of light alloys. This collection of articles aims to provide a comprehensive understanding of how light alloys can be optimized for performance in demanding environments, offering insights into future trends and innovations in alloy design and processing.

Dr. Hongmei Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • light alloys
  • microstructure
  • alloy forming
  • mechanical properties
  • additive manufacturing
  • high-performance materials
  • alloy design
  • fatigue resistance
  • advanced forging techniques
  • material optimization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3800 KiB  
Article
Characterizing the Substructural Changes in Metals by Microindentation and Various Numerical Approaches
by János György Bátorfi and Jurij J. Sidor
Metals 2025, 15(7), 795; https://doi.org/10.3390/met15070795 - 14 Jul 2025
Viewed by 205
Abstract
This contribution compares various theories dealing with the assessment of dislocation density in metals subjected to different straining levels. The paper examines both substructure development and the evolution of dislocation densities in 1xxx, 5xxx, and 6xxx Al alloys. Barlat’s dislocation model, Kocks–Mecking–Estrin (K-M-E) [...] Read more.
This contribution compares various theories dealing with the assessment of dislocation density in metals subjected to different straining levels. The paper examines both substructure development and the evolution of dislocation densities in 1xxx, 5xxx, and 6xxx Al alloys. Barlat’s dislocation model, Kocks–Mecking–Estrin (K-M-E) theory, and Kubin–Estrin (K-E) type modeling approaches were analyzed. The dislocation model parameters were determined from the microindentation profiles for the rolled Al alloys. It was shown that a strong correlation exists between the K-E and K-M-E models, confirming their reliability in describing the relationship between strain, stress, and dislocation density. These numerical approaches effectively capture the evolution of dislocation density with strain, making them suitable for the analysis of the accumulation of stored energy during deformation. The development of substructure during straining was inferred from the microindentation experiments, and the resulting dependencies tended to align with the characteristic curve observed in various metals. Full article
(This article belongs to the Special Issue Formation, Microstructure, and Properties of Light Alloys)
Show Figures

Figure 1

Back to TopTop