Characterizing the Substructural Changes in Metals by Microindentation and Various Numerical Approaches
Abstract
1. Introduction
2. Brief Description of Dislocation Models
2.1. Kocks–Mecking and Kocks–Mecking–Estrin Type Dislocation Models
2.2. Kubin–Estrin Modeling Approach
2.3. Barlat-Type Modeling Approach
2.4. Performance of Numerical Models
3. Materials and Experimental Procedures
4. Correlation Between Model Parameters in Diverse Numerical Approaches
5. Assessment of Dislocation Evolution in the Investigated 1xxx, 5xxx, and 6xxx Al Alloys
5.1. Hardening Phenomena During Rolling in 1xxx, 5xxx, and 6xxx Al Alloys
5.2. Substructure Evolution
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Humphreys, F.J. Recrystallization and Related Annealing Phenomena, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-08-098235-9. [Google Scholar]
- Hansen, N. The Effect of Grain Size and Strain on the Tensile Flow Stress of Aluminium at Room Temperature. Acta Metall. 1977, 25, 863–869. [Google Scholar] [CrossRef]
- Csanádi, T.; Chinh, N.Q.; Gubicza, J.; Vörös, G.; Langdon, T.G. Characterization of Stress–Strain Relationships in Al over a Wide Range of Testing Temperatures. Int. J. Plast. 2014, 54, 178–192. [Google Scholar] [CrossRef]
- Sidor, J.J.; Bátorfi, J.G. Vickers Indentation-Based Assessment of Dislocation Density and Substructure Evolution in Aluminum Alloys. Mater. Charact. 2025, 221, 114764. [Google Scholar] [CrossRef]
- Kocks, U.F.; Mecking, H. Physics and Phenomenology of Strain Hardening: The FCC Case. Prog. Mater. Sci. 2003, 48, 171–273. [Google Scholar] [CrossRef]
- Devincre, B.; Hoc, T.; Kubin, L. Dislocation Mean Free Paths and Strain Hardening of Crystals. Science 2008, 320, 1745–1748. [Google Scholar] [CrossRef]
- Gil Sevillano, J.; Van Houtte, P.; Aernoudt, E. Large Strain Work Hardening and Textures. Prog. Mater. Sci. 1980, 25, 69–134. [Google Scholar] [CrossRef]
- Sadeghi, A.; Kozeschnik, E. Modeling the Evolution of the Dislocation Density and Yield Stress of Al over a Wide Range of Temperatures and Strain Rates. Met. Mater. Trans. A 2024, 55, 1643–1653. [Google Scholar] [CrossRef]
- Gubicza, J. X-Ray Line Profile Analysis in Materials Science; IGI Global: New York, NY, USA, 2014; ISBN 978-1-4666-5852-3. [Google Scholar]
- Gubicza, J.; Ungár, T. Characterization of Defect Structures in Nanocrystalline Materials by X-Ray Line Profile Analysis. Z. Für Krist.-Cryst. Mater. 2007, 222, 567–579. [Google Scholar] [CrossRef]
- Barlat, F. A Simple Model for Dislocation Behavior, Strain and Strain Rate Hardening Evolution in Deforming Aluminum Alloys. Int. J. Plast. 2002, 18, 919–939. [Google Scholar] [CrossRef]
- Kubin, L.P.; Estrin, Y. Evolution of Dislocation Densities and the Critical Conditions for the Portevin-Le Châtelier Effect. Acta Metall. Mater. 1990, 38, 697–708. [Google Scholar] [CrossRef]
- Csanádi, T.; Chinh, N.Q.; Gubicza, J.; Langdon, T.G. Plastic Behavior of Fcc Metals over a Wide Range of Strain: Macroscopic and Microscopic Descriptions and Their Relationship. Acta Mater. 2011, 59, 2385–2391. [Google Scholar] [CrossRef]
- Estrin, Y.; Mecking, H. A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models. Acta Metall. 1984, 32, 57–70. [Google Scholar] [CrossRef]
- Kocks, U.F. Laws for Work-Hardening and Low-Temperature Creep. J. Eng. Mater. Technol. 1976, 98, 76–85. [Google Scholar] [CrossRef]
- Jeong, H.T.; Kim, W.J. Strain Hardening Behavior and Strengthening Mechanism in Mg-Rich Al–Mg Binary Alloys Subjected to Aging Treatment. Mater. Sci. Eng. A 2020, 794, 139862. [Google Scholar] [CrossRef]
- Jobba, M.; Mishra, R.K.; Niewczas, M. Flow Stress and Work-Hardening Behaviour of Al–Mg Binary Alloys. Int. J. Plast. 2015, 65, 43–60. [Google Scholar] [CrossRef]
- Lee, B.-H.; Kim, S.-H.; Park, J.-H.; Kim, H.-W.; Lee, J.-C. Role of Mg in Simultaneously Improving the Strength and Ductility of Al–Mg Alloys. Mater. Sci. Eng. A 2016, 657, 115–122. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, M.; Chen, X.; Cao, Y.; Roven, H.J.; Murashkin, M.; Valiev, R.Z.; Zhou, H. Effect of Mg on Microstructure and Mechanical Properties of Al-Mg Alloys Produced by High Pressure Torsion. Scr. Mater. 2019, 159, 137–141. [Google Scholar] [CrossRef]
- Zha, M.; Meng, X.-T.; Zhang, H.-M.; Zhang, X.-H.; Jia, H.-L.; Li, Y.-J.; Zhang, J.-Y.; Wang, H.-Y.; Jiang, Q.-C. High Strength and Ductile High Solid Solution Al–Mg Alloy Processed by a Novel Hard-Plate Rolling Route. J. Alloys Compd. 2017, 728, 872–877. [Google Scholar] [CrossRef]
- Edalati, K.; Horita, Z. High-Pressure Torsion of Pure Metals: Influence of Atomic Bond Parameters and Stacking Fault Energy on Grain Size and Correlation with Hardness. Acta Mater. 2011, 59, 6831–6836. [Google Scholar] [CrossRef]
- Gubicza, J.; Kassem, M.; Ribárik, G.; Ungár, T. The Microstructure of Mechanically Alloyed Al–Mg Determined by X-Ray Diffraction Peak Profile Analysis. Mater. Sci. Eng. A 2004, 372, 115–122. [Google Scholar] [CrossRef]
- Horváth, G.; Chinh, N.Q.; Gubicza, J.; Lendvai, J. Plastic Instabilities and Dislocation Densities during Plastic Deformation in Al–Mg Alloys. Mater. Sci. Eng. A 2007, 445–446, 186–192. [Google Scholar] [CrossRef]
- Chinh, N.Q.; Csanádi, T.; Gubicza, J.; Langdon, T.G. Plastic Behavior of Face-Centered-Cubic Metals over a Wide Range of Strain. Acta Mater. 2010, 58, 5015–5021. [Google Scholar] [CrossRef]
- Balaji, V.; Kumar, S.; Krishnaswamy, H.; Digavalli, R.K.; Lee, M.G.; Barlat, F. Transient Stress Relaxation Test to Identify Material Constants in Dislocation Density Model. Met. Mater. Trans. A 2022, 53, 1969–1990. [Google Scholar] [CrossRef]
- Hansen, N.; Huang, X. Microstructure and Flow Stress of Polycrystals and Single Crystals. Acta Mater. 1998, 46, 1827–1836. [Google Scholar] [CrossRef]
- Sidor, J.J.; Chakravarty, P.; Bátorfi, J.G.; Nagy, P.; Xie, Q.; Gubicza, J. Assessment of Dislocation Density by Various Techniques in Cold Rolled 1050 Aluminum Alloy. Metals 2021, 11, 1571. [Google Scholar] [CrossRef]
- Gubicza, J.; Chinh, N.Q.; Horita, Z.; Langdon, T.G. Effect of Mg Addition on Microstructure and Mechanical Properties of Aluminum. Mater. Sci. Eng. A 2004, 387–389, 55–59. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H. Indentation Size Effects in Crystalline Materials: A Law for Strain Gradient Plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Wang, P.; Gao, Y.; Wang, P. A Comparative Study of Indentation Size Effect Models for Different Materials. Sci. Rep. 2024, 14, 20010. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Dhinwal, S.S.; Vu, V.Q.; Toth, L.S. A New Macroscopic Strain Hardening Function Based on Microscale Crystal Plasticity and Its Application in Polycrystal Modeling. Mater. Sci. Eng. A 2021, 823, 141634. [Google Scholar] [CrossRef]
- Galanov, B.A.; Milman, Y.V.; Chugunova, S.I.; Goncharova, I.V.; Voskoboinik, I.V. Application of the Improved Inclusion Core Model of the Indentation Process for the Determination of Mechanical Properties of Materials. Crystals 2017, 7, 87. [Google Scholar] [CrossRef]
- Zhang, P.; Li, S.X.; Zhang, Z.F. General Relationship between Strength and Hardness. Mater. Sci. Eng. A 2011, 529, 62–73. [Google Scholar] [CrossRef]
- Tiryakioğlu, M. On the Relationship between Vickers Hardness and Yield Stress in Al–Zn–Mg–Cu Alloys. Mater. Sci. Eng. A 2015, 633, 17–19. [Google Scholar] [CrossRef]
- Meng, Y.; Ju, X.; Yang, X. The Measurement of the Dislocation Density Using TEM. Mater. Charact. 2021, 175, 111065. [Google Scholar] [CrossRef]
- Bay, B.; Hansen, N.; Kuhlmann-Wilsdorf, D. Deformation Structures in Lightly Rolled Pure Aluminium. Mater. Sci. Eng. A 1989, 113, 385–397. [Google Scholar] [CrossRef]
- Nes, E. Modelling of Work Hardening and Stress Saturation in FCC Metals. Prog. Mater. Sci. 1997, 41, 129–193. [Google Scholar] [CrossRef]
- Figueiredo, R.B.; Kawasaki, M.; Langdon, T.G. Seventy Years of Hall-Petch, Ninety Years of Superplasticity and a Generalized Approach to the Effect of Grain Size on Flow Stress. Prog. Mater. Sci. 2023, 137, 101131. [Google Scholar] [CrossRef]
- Hughes, D.A. Microstructural Evolution in a Non-Cell Forming Metal: Al+Mg. Acta Metall. Mater. 1993, 41, 1421–1430. [Google Scholar] [CrossRef]
- May, J.; Dinkel, M.; Amberger, D.; Höppel, H.W.; Göken, M. Mechanical Properties, Dislocation Density and Grain Structure of Ultrafine-Grained Aluminum and Aluminum-Magnesium Alloys. Met. Mater. Trans. A 2007, 38, 1941–1945. [Google Scholar] [CrossRef]
- May, J.; Höppel, H.W.; Göken, M. Strain Rate Sensitivity of Ultrafine-Grained Aluminium Processed by Severe Plastic Deformation. Scr. Mater. 2005, 53, 189–194. [Google Scholar] [CrossRef]
Material | λ1 (1/m) | λ | Refs. |
---|---|---|---|
Pure Al | (0.77…1.43) × 108 | (15.36…18.77) | [16,17,18,19] |
Al-0.5Mg | (1.63…2.03) × 108 | (13.41…13.90) | [16,17,19] |
Al-1Mg | (1.48…2.27) × 108 | (6.42…10.94) | [16,17,20] |
Al-2Mg | 2.77 × 108 | 8.65 | [16,17] |
Al-3Mg | (2.61…3.07) × 108 | (5.65…7.30) | [16,17,18] |
Al-4Mg | (2.68…2.75) × 108 | (4.83…5.40) | [16,17,19] |
Al-5Mg | (2.10…2.82) × 108 | (2.85…4.90) | [16,18,20] |
Al-7Mg | (2.86…2.87) × 108 | (3.58…4.23) | [16,18] |
Al-9Mg | 2.03 × 108 | 1.78 | [16,20] |
Al-10Mg | (2.80…3.24) × 108 | (3.48…3.66) | [16,18] |
Al-13Mg | 2.95 × 108 | 3.54 | [16] |
Material | C1 (m−2) | C2 (1) | C3 (1/m) | C4 | Refs. |
---|---|---|---|---|---|
Al | 1.87 × 1014 | 1.0 | 9.0 × 105 | 1.2 | [13,21] |
Au | 3.91 × 1015 | 3.1 | 2.0 × 106 | 3.6 | [13,21] |
Cu | 7.23 × 1015 | 5.6 | 3.0 × 106 | 5.9 | [13,21] |
Ni | 8.32 × 1015 | 2.5 | 4.0 × 106 | 2.6 | [13,21] |
Al-0.5Mg | 5.2 × 1014 | 7.0 | 2.1 × 107 | 8.1 | [22,23] |
Al-1Mg | 8.4 × 1014 | 5.5 | 2.6 × 107 | 9.4 | [22,23] |
Al-2Mg | 1.6 × 1015 | 4.0 | 1.8 × 107 | 8.0 | [22,23] |
Al-3Mg | 1.9 × 1015 | 3.0 | 4.8 × 106 | 7.8 | [22,23] |
1xxx Al alloy | 2.55 × 1014 | 1 | [4] | ||
Al-4Mg-0.6Si alloy | 10.5 × 1014 | 1.7 | [4] |
Material | σ0 (MPa) | σy (MPa) | Fy (109/mm2) | Fs (1010/mm2) | k1 | k2 |
---|---|---|---|---|---|---|
Pure Al | 6.3353 | 42.392 | 0.44926 | 0.71632 | 0.15269 | 13.965 |
2008-T4 | 106.69 | 140.04 | 1.5067 | 3.5897 | 1.1663 | 20.129 |
3003-O | 21.826 | 63.298 | 0.9211 | 0.67428 | 0.30117 | 8.0847 |
5182-O | 53.346 | 96.209 | 2.4512 | 3.0922 | 1.1358 | 11.252 |
5032-T4 | 91.072 | 119.73 | 1.222 | 2.6139 | 1.2043 | 8.9927 |
6022-T4 | 93.246 | 159.57 | 3.3 | 3.6317 | 1.4105 | 16.509 |
Material | Hsat (Pa) | hp (Pa) | a | H00 (Pa) |
---|---|---|---|---|
Al-1xxx | 5.80 × 108 | 1.46 × 109 | 1.818 | 1.85 × 108 |
Al-5xxx | 1.10 × 109 | 5.19 × 109 | 1.727 | 5.56 × 108 |
Al-6xxx | 1.05 × 109 | 5.59 × 109 | 1.662 | 5.77 × 108 |
Material | λ1 × 107, m−1 | λ | C1 × 1014, m−2 | |
---|---|---|---|---|
Al-1xxx | 1.67 | 0.82 | 2.551 | 1.230 |
Al-5xxx | 3.00 | 0.95 | 7.105 | 1.425 |
Al-6xxx | 4.12 | 1.74 | 7.317 | 2.610 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bátorfi, J.G.; Sidor, J.J. Characterizing the Substructural Changes in Metals by Microindentation and Various Numerical Approaches. Metals 2025, 15, 795. https://doi.org/10.3390/met15070795
Bátorfi JG, Sidor JJ. Characterizing the Substructural Changes in Metals by Microindentation and Various Numerical Approaches. Metals. 2025; 15(7):795. https://doi.org/10.3390/met15070795
Chicago/Turabian StyleBátorfi, János György, and Jurij J. Sidor. 2025. "Characterizing the Substructural Changes in Metals by Microindentation and Various Numerical Approaches" Metals 15, no. 7: 795. https://doi.org/10.3390/met15070795
APA StyleBátorfi, J. G., & Sidor, J. J. (2025). Characterizing the Substructural Changes in Metals by Microindentation and Various Numerical Approaches. Metals, 15(7), 795. https://doi.org/10.3390/met15070795