Metal Processing for Sustainability

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Extractive Metallurgy".

Deadline for manuscript submissions: closed (10 July 2024) | Viewed by 3283

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical & Materials Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
Interests: high-temperature metal processing for sustainability; clean production; recycling of metals and for energy storage

Special Issue Information

Dear Colleagues,

I am pleased to invite you to contribute to a special issue of the journal Metals on metal processing for sustainability. As many of you know, open source and open access have been important to me throughout my career, so when invited I welcomed the opportunity to create a special issue in Metals which is completely open access.

This is a broad topic, covering areas from clean production of high-volume commodity metals such as steel, Al, Cr, Cu, Zn, Mn, Mg, etc; to scaling clean production of metals for new energy systems including silicon, rare earth, and battery materials; to energy storage inspired by metal processing such as liquid metal batteries.

This topic is inspired in part by the Reactive Metals Workshop (RMW), and I have met many of you through RMW. Whether you’re connected to the workshop or not, I look forward to seeing many of you in March at the first RMW in three years.

Dr. Adam C. Powell
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal processing
  • climate mitigation
  • greenhouse gases
  • primary production
  • metal recycling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 4713 KiB  
Article
Liquid Metal Leaching for Rare Earth Magnet Recycling
by Emmanuel Opoku, Chinenye Chinwego, Adam Powell and Brajendra Mishra
Metals 2024, 14(11), 1299; https://doi.org/10.3390/met14111299 - 18 Nov 2024
Viewed by 1032
Abstract
This study investigates the optimization of liquid metal leaching for recycling rare earth elements (REEs) from NdFeB magnets, a critical step in addressing the increasing demand for these materials in various high-tech applications. We explored the effects of leaching time, stirring, and magnet [...] Read more.
This study investigates the optimization of liquid metal leaching for recycling rare earth elements (REEs) from NdFeB magnets, a critical step in addressing the increasing demand for these materials in various high-tech applications. We explored the effects of leaching time, stirring, and magnet demagnetization on the yield of the leaching process using molten magnesium. Conducted at 900 °C, our experiments assessed the leaching process over periods of 2, 3.5, and 5 h, with and without the application of stirring. Our findings show that longer leaching times considerably increase neodymium (Nd) and praseodymium (Pr) leaching yield, with a notable peak in efficiency found at 5 h. Stirring improved the uniformity of REEs significantly and resulted in up to 80% yield. Furthermore, our data show that pre-leaching magnet demagnetization improves leaching specificity, significantly reducing the presence of non-target metals like nickel and copper. These insights offer a pathway to more cost-effective recycling of REEs from magnet scrap, which is essential for environmentally conscious management of resources amid the escalating global demand for REEs. Full article
(This article belongs to the Special Issue Metal Processing for Sustainability)
Show Figures

Figure 1

21 pages, 14427 KiB  
Article
Aluminothermic Reduction Kinetics of Calcium Silicate Slag for Silicon Alloy Production
by Harald G. R. Philipson, Maria Wallin and Kristian Etienne Einarsrud
Metals 2024, 14(6), 604; https://doi.org/10.3390/met14060604 - 21 May 2024
Cited by 1 | Viewed by 1574
Abstract
We investigated the reaction kinetics and initial chemical conditions in the production of silicon alloys, employing aluminum as the reductant for calcium silicate slag, to enhance process economics and scalability to industrial levels. The apparent kinetics and transient chemical conditions were studied by [...] Read more.
We investigated the reaction kinetics and initial chemical conditions in the production of silicon alloys, employing aluminum as the reductant for calcium silicate slag, to enhance process economics and scalability to industrial levels. The apparent kinetics and transient chemical conditions were studied by immersing solid aluminum into molten slag, allowing the reaction to proceed for varying durations without external agitation, before quenching the reaction for chemical and microscopic analyses of the resulting silicon alloy and slag. The majority of the conversion was observed within the first 15 s at 1650 °C, driven by significant chemical interactions and interfacial turbulence introduced upon aluminum immersion. For Al-SiO2 stoichiometries ranging from 0.5 to 1.2, the slag phase reaction conformed to first-order kinetics during the initial two minutes, when it approached equilibrium. The mass transfer coefficients for Al2O3 were estimated at 1–2 × 10−4 m/s, comparable to those for SiO2 and CaO. A constant mass transfer coefficient could not be established for stoichiometries of 1.6 and 2, as these deviated from the standard slag mass transfer relationship and did not adhere to established relationships. Despite near-complete reactions, alloy–slag mixing was extensive, decreasing with lower stoichiometry values. Full article
(This article belongs to the Special Issue Metal Processing for Sustainability)
Show Figures

Figure 1

Back to TopTop