Research and Application of Lightweight Metals

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Casting, Forming and Heat Treatment".

Deadline for manuscript submissions: 10 March 2026 | Viewed by 115

Special Issue Editor

School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Interests: magnesium alloys; aluminum alloys; steel; metals; light metals; microstructure; precipitation; phase transformations; material characterization; transmission electron microscopy (TEM); scanning electron microscopy (SEM); electron microscopy; mechanical properties; materials processing; corrosion
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Driven by global carbon neutrality policies, light metals, including magnesium, aluminum, and titanium, as well as their alloys and composite materials, have become crucial structural materials due to their high specific strength and lightweight properties. These materials are essential for reducing CO2 emissions across various industries, including aerospace and automotive. Extensive research on the manufacturing processes, microstructure, properties, and applications of these materials is of significant importance.

This Special Issue aims to gather original research and review articles focusing on the manufacture, microstructure, properties, and applications of lightweight metals, their alloys, and composite materials. Manuscripts employing experimental or simulation methods are all welcome. The goal is to explore innovative fabrication strategies, advanced characterization techniques, and real-world applications of these materials. Contributions that delve into the design, processing techniques, and performance optimization of lightweight metals, alloys, and composite materials are particularly encouraged.

Dr. Bin Chen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lightweight metals
  • magnesium
  • aluminum
  • titanium
  • microstructure
  • application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 5267 KB  
Article
Effect of Increased Extrusion Ram Speed and Liquid Nitrogen Cooling on the Mechanical Properties of 6060 Aluminum Alloy
by Evangelos Giarmas, Emmanouil Tzimtzimis, Konstantinos Tsongas, Apostolos Korlos, Constantine David and Dimitrios Tzetzis
Metals 2025, 15(10), 1136; https://doi.org/10.3390/met15101136 - 12 Oct 2025
Abstract
This study investigates the impact of increased extrusion ram speed—achieved by utilizing liquid nitrogen as a die cooling agent—on the mechanical properties of a 6060-aluminum alloy. Mechanical characterization of the extruded profiles was performed using both tensile and nanoindentation tests. In addition, nanoindentation [...] Read more.
This study investigates the impact of increased extrusion ram speed—achieved by utilizing liquid nitrogen as a die cooling agent—on the mechanical properties of a 6060-aluminum alloy. Mechanical characterization of the extruded profiles was performed using both tensile and nanoindentation tests. In addition, nanoindentation was employed to evaluate creep behaviour and to extract key parameters, such as the steady-state creep strain rate. The findings indicate that while the enhanced ram speed has a minimal influence on Ultimate Tensile Strength (UTS) and Yield Tensile Strength (YTS), it has a more noticeable effect on elongation. Finite Element Analysis (FEA) was used in conjunction with nanoindentation data to model the mechanical behaviour of the alloy, showing good agreement with experimental tensile test results. This confirms the effectiveness of FEA-assisted nanoindentation as a reliable tool for mechanical assessment. Moreover, the results demonstrate that creep displacement is significantly influenced by the increased ram speed. However, the steady-state creep strain rate remained largely unaffected by variations in ram speed with the use of liquid nitrogen as a coolant. Notably, the creep stress exponent (n) was found to increase with higher ram speeds enabled by liquid nitrogen cooling. Full article
(This article belongs to the Special Issue Research and Application of Lightweight Metals)
Show Figures

Figure 1

Back to TopTop