Advances in Porous Hydrophobic Membrane Materials for Membrane Distillation

A special issue of Membranes (ISSN 2077-0375).

Deadline for manuscript submissions: 28 February 2025 | Viewed by 5464

Special Issue Editors


E-Mail Website
Guest Editor
Institute on Membrane Technology, National Research Council, ITM-CNR, 87036 Arcavacata di Rende, Italy
Interests: polymeric membranes; sustainable membrane preparation; bio-polymeric membranes; flat membranes; hollow-fibers; nano fibers; membrane preparation; membrane characterization; pervaporation; antifouling coatings; self-cleaning membranes; ultra-micro filtration
Special Issues, Collections and Topics in MDPI journals
Institute on Membrane Technology, ITM-CNR, 87036 Arcavacata di Rende, Italy
Interests: hydophobic membrane for membrane distillation

Special Issue Information

Dear Colleagues,

As a large quantity of the World’s population has been suffering from a lack of clean drinking water, membrane distillation has been playing an important role in desalination and water treatment in recent years. Therefore, it is important to further develop membrane distillation-related research.

We are pleased to invite you to contribute to this Special Issue of Membranes.

The aim of this Special Issue is to gather recent advanced research on hydrophobic porous membranes targets for the membrane distillation process. Topics of interest for this Special Issue include, but are not limited to, membrane hydrophobicity improvement, new hydrophobic membrane structure design, anti-fouling and anti-wetting improvement, or the development of new membrane material for membrane distillation. Research could also focus on desalination or water treatment by membrane distillation, such as the treatment of industrial wastewater or other waters with pollutants. A possible research direction could also be the design of the membrane distillation configuration to improve the efficiency of the process, save energy input, or lower the total cost. We welcome the submission of research articles or reviews in the related area.

We look forward to receiving your contributions.

Dr. Alberto Figoli
Guest Editor

Xue Li
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrophobic porous membrane
  • membrane distillation
  • anti-fouling
  • anti-wetting
  • configuration design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 2856 KiB  
Communication
A Novel Delayed Phase Inversion Strategy Enables Green PVDF Membranes for Membrane Distillation
by Wenbin Sun, Longbo Xia, Ping Luo and Dong Zou
Membranes 2024, 14(11), 241; https://doi.org/10.3390/membranes14110241 - 15 Nov 2024
Viewed by 625
Abstract
Polyvinylidene fluoride (PVDF) membranes are extensively utilized in membrane distillation (MD) for water treatment. However, traditional methods easily form asymmetrical membranes with dense skin layers that are detrimental to membrane flux. Herein, an eco-friendly PVDF membrane was fabricated by utilizing a delayed phase [...] Read more.
Polyvinylidene fluoride (PVDF) membranes are extensively utilized in membrane distillation (MD) for water treatment. However, traditional methods easily form asymmetrical membranes with dense skin layers that are detrimental to membrane flux. Herein, an eco-friendly PVDF membrane was fabricated by utilizing a delayed phase separation process without using any pore-forming agents. In addition, methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (PolarClean) was used as a green solvent without posing risks to humans and the environment. It was demonstrated that the PVDF concentration is crucial in influencing the microstructures and performance of the resulting membranes. As the PVDF concentration increased, the morphology changed significantly, resulting in a reduction of pore size. When feeding the device with NaCl solution at a concentration of 35 g/L, the MD water vapor flux reached 18.49 kg·m−2·h−1, while maintaining a salt rejection of over 99.97% during the continuous operation for 24 h. This work presented a method for producing green PVDF membranes via delayed phase inversion with satisfactory water vapor flux and salt rejection, highlighting their prospect for effective applications in MD for water treatment. Full article
Show Figures

Figure 1

16 pages, 6386 KiB  
Article
Fouling Reduction and Thermal Efficiency Enhancement in Membrane Distillation Using a Bilayer-Fluorinated Alkyl Silane–Carbon Nanotube Membrane
by Sumona Paul, Mitun Chandra Bhoumick and Somenath Mitra
Membranes 2024, 14(7), 152; https://doi.org/10.3390/membranes14070152 - 10 Jul 2024
Cited by 1 | Viewed by 1402
Abstract
In this study, we report the robust hydrophobicity, lower fouling propensity, and high thermal efficiency of the 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS)-coated, carbon nanotube-immobilized membrane (CNIM) when applied to desalination via membrane distillation. Referred to as FAS-CNIM, the membrane was developed through a process that combined [...] Read more.
In this study, we report the robust hydrophobicity, lower fouling propensity, and high thermal efficiency of the 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS)-coated, carbon nanotube-immobilized membrane (CNIM) when applied to desalination via membrane distillation. Referred to as FAS-CNIM, the membrane was developed through a process that combined the drop-casting of nanotubes flowed by a dip coating of the FAS layer. The membranes were tested for porosity, surface morphology, thermal stability, contact angle, and flux. The static contact angle of the FAS-CNIM was 153 ± 1°, and the modified membrane showed enhancement in water flux by 18% compared to the base PTFE membrane. The flux was tested at different operating conditions and the fouling behavior was investigated under extreme conditions using a CaCO3 as well as a mixture of CaCO3 and CaSO4 solution. The FAS-CNIM showed significantly lower fouling than plain PTFE or the CNIM; the relative flux reduction was 34.4% and 37.6% lower than the control for the CaCO3 and CaCO3/CaSO4 mixed salt solution. The FAS-CNIM exhibited a notable decrease in specific energy consumption (SEC). Specifically, the SEC for the FAS-CNIM measured 311 kwh/m3 compared to 330.5 kwh/m3 for the CNIM and 354 kwh/m3 for PTFE using a mixture of CaCO3/CaSO4. This investigation underscores the significant contribution of the carbon nanotubes’ (CNTs) intermediate layer in creating a durable superhydrophobic membrane, highlighting the potential of utilizing carbon nanotubes for tailored interface engineering to tackle fouling for salt mixtures. The innovative design of a superhydrophobic membrane has the potential to alleviate wetting issues resulting from low surface energy contaminants present in the feed of membrane distillation processes. Full article
Show Figures

Figure 1

14 pages, 2149 KiB  
Article
Bead-Containing Superhydrophobic Nanofiber Membrane for Membrane Distillation
by Md Eman Talukder, Md. Romon Talukder, Md. Nahid Pervez, Hongchen Song and Vincenzo Naddeo
Membranes 2024, 14(6), 120; https://doi.org/10.3390/membranes14060120 - 23 May 2024
Cited by 3 | Viewed by 1218
Abstract
This study introduces an innovative approach to enhancing membrane distillation (MD) performance by developing bead-containing superhydrophobic sulfonated polyethersulfone (SPES) nanofibers with S-MWCNTs. By leveraging SPES’s inherent hydrophobicity and thermal stability, combined with a nanostructured fibrous configuration, we engineered beads designed to optimize the [...] Read more.
This study introduces an innovative approach to enhancing membrane distillation (MD) performance by developing bead-containing superhydrophobic sulfonated polyethersulfone (SPES) nanofibers with S-MWCNTs. By leveraging SPES’s inherent hydrophobicity and thermal stability, combined with a nanostructured fibrous configuration, we engineered beads designed to optimize the MD process for water purification applications. Here, oxidized hydrophobic S-MWCNTs were dispersed in a SPES solution at concentrations of 0.5% and 1.0% by weight. These bead membranes are fabricated using a novel electrospinning technique, followed by a post-treatment with the hydrophobic polyfluorinated grafting agent to augment nanofiber membrane surface properties, thereby achieving superhydrophobicity with a water contact angle (WCA) of 145 ± 2° and a higher surface roughness of 512 nm. The enhanced membrane demonstrated a water flux of 87.3 Lm−2 h−1 and achieved nearly 99% salt rejection efficiency at room temperature, using a 3 wt% sodium chloride (NaCl) solution as the feed. The results highlight the potential of superhydrophobic SPES nanofiber beads in revolutionizing MD technology, offering a scalable, efficient, and robust membrane for salt rejection. Full article
Show Figures

Figure 1

12 pages, 6822 KiB  
Article
In Situ-Grown Al2O3 Nanoflowers and Hydrophobic Modification Enable Superhydrophobic SiC Ceramic Membranes for Membrane Distillation
by Yuqi Song, Kai Miao, Jinxin Liu, Yutang Kang, Dong Zou and Zhaoxiang Zhong
Membranes 2024, 14(5), 117; https://doi.org/10.3390/membranes14050117 - 19 May 2024
Viewed by 1384
Abstract
Membrane distillation (MD) is considered a promising technology for desalination. In the MD process, membrane pores are easily contaminated and wetted, which will degrade the permeate flux and salt rejection of the membrane. In this work, SiC ceramic membranes were used as the [...] Read more.
Membrane distillation (MD) is considered a promising technology for desalination. In the MD process, membrane pores are easily contaminated and wetted, which will degrade the permeate flux and salt rejection of the membrane. In this work, SiC ceramic membranes were used as the supports, and an Al2O3 micro-nano structure was constructed on its surface. The surface energy of Al2O3@SiC micro-nano composite membranes was reduced by organosilane grafting modification. The effective deposition of Al2O3 nanoflowers on the membrane surface increased membrane roughness and enhanced the anti-fouling and anti-wetting properties of the membranes. Simultaneously, the presence of nanoflowers also regulated the pore structures and thus decreased the membrane pore size. In addition, the effects of Al2(SO4)3 concentration and sintering temperature on the surface morphology and performance of the membranes were investigated in detail. It was demonstrated that the water contact angle of the resulting membrane was 152.4°, which was higher than that of the pristine membrane (138.8°). In the treatment of saline water containing 35 g/L of NaCl, the permeate flux was about 11.1 kg⋅m−2⋅h−1 and the salt rejection was above 99.9%. Note that the pristine ceramic membrane cannot be employed for MD due to its larger membrane pore size. This work provides a new method for preparing superhydrophobic ceramic membranes for MD. Full article
Show Figures

Figure 1

Back to TopTop