A Progressive Loss Decomposition Method for Low-Frequency Shielding of Soft Magnetic Materials
Abstract
:1. Introduction
2. Theory and Analysis
3. Experiment and Method Comparison
4. Multi-Material PLD Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 1966, 29, 255. [Google Scholar] [CrossRef]
- Fan, W.; Quan, W.; Liu, F.; Xing, L.; Liu, G. Suppression of the bias error induced by magnetic noise in a spin-exchange relaxation-free gyroscope. IEEE Sens. J. 2019, 19, 9712–9721. [Google Scholar] [CrossRef]
- Fang, X.; Wei, K.; Zhai, Y.; Zhao, T.; Chen, X.; Zhou, M.; Liu, Y.; Ma, D.; Xiao, Z. Analysis of effects of magnetic field gradient on atomic spin polarization and relaxation in optically pumped atomic magnetometers. Opt. Express 2022, 30, 3926–3940. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Lu, J.; Wang, Z.; Sun, B.; Ma, Y.; Wang, Y.; Han, B. Minimizing magnetic fields of the low-noise MnZn ferrite magnetic shield for atomic magnetometer. J. Phys. D Appl. Phys. 2021, 55, 015003. [Google Scholar] [CrossRef]
- Tang, J.; Qiu, S.; Zhang, L.; Sun, J.; Zhou, X. Magnetic noise analysis for small magnetically shielded room in different environmental magnetic fields. Measurement 2024, 224, 113904. [Google Scholar] [CrossRef]
- Taulu, S.; Simola, J.; Nenonen, J.; Parkkonen, L. Novel noise reduction methods. In Magnetoencephalography: From Signals to Dynamic Cortical Networks; Springer: Cham, Switzerland, 2019; pp. 73–109. [Google Scholar]
- Munger Jr, C.T. Magnetic Johnson noise constraints on electron electric dipole moment experiments. Phys. Rev. A—At. Mol. Opt. Phys. 2005, 72, 012506. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, H.; Ma, L.; Quan, J.; Fan, W.; Xu, X.; Fu, Y.; Duan, L.; Quan, W. Study on the magnetic noise characteristics of amorphous and nanocrystalline inner magnetic shield layers of SERF co-magnetometer. Materials 2022, 15, 8267. [Google Scholar] [CrossRef]
- Chrobak, A.; Kaleta, A.; Kwapulinski, P.; Kubisztal, M.; Haneczok, G. Magnetic shielding effectiveness of iron-based amorphous alloys and nanocrystalline composites. IEEE Trans. Magn. 2012, 48, 1512–1515. [Google Scholar] [CrossRef]
- Stoppels, D. Developments in soft magnetic power ferrites. J. Magn. Magn. Mater. 1996, 160, 323–328. [Google Scholar] [CrossRef]
- Hu, Y.; Heng, T.; Zhang, T.; Zhou, W.; Chen, Q. An Improved Magnetic Coupling Resonant Wireless Power Transfer System Based on Ferrite-Nanocrystalline Hybrid Shielding Method. Int. J. Circuit Theory Appl. 2024; online version of record. [Google Scholar]
- Wang, J.; Xue, Z.; Song, S.; Sun, H. Magnetic properties and loss separation mechanism of FeSi soft magnetic composites with in situ NiZn-ferrite coating. J. Mater. Sci. Mater. Electron. 2021, 32, 20410–20421. [Google Scholar] [CrossRef]
- Beatrice, C.; Fiorillo, F. Measurement and prediction of magnetic losses in Mn-Zn ferrites from DC to the megahertz range. IEEE Trans. Magn. 2006, 42, 2867–2869. [Google Scholar] [CrossRef]
- Fiorillo, F.; Bertotti, G.; Appino, C.; Pasquale, M. Soft magnetic materials. In Wiley Encyclopedia of Electrical and Electronics Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 1–42. [Google Scholar]
- Fukao, T.; Chiba, A.; Matsui, M. Test results on a super-high-speed amorphous-iron reluctance motor. IEEE Trans. Ind. Appl. 1989, 25, 119–125. [Google Scholar] [CrossRef]
- Herzer, G. Modern soft magnets: Amorphous and nanocrystalline materials. Acta Mater. 2013, 61, 718–734. [Google Scholar] [CrossRef]
- Füzer, J.; Strečková, M.; Dobák, S.; Ďáková, L.; Kollár, P.; Fáberová, M.; Bureš, R.; Osadchuk, Y.; Kurek, P.; Vojtko, M. Innovative ferrite nanofibres reinforced soft magnetic composite with enhanced electrical resistivity. J. Alloys Compd. 2018, 753, 219–227. [Google Scholar] [CrossRef]
- Lauda, M.; Füzer, J.; Kolláar, P.; Strečková, M.; Bureš, R.; Kováč, J.; Bat’ková, M.; Bat’ko, I. Magnetic properties and loss separation in FeSi/MnZnFe2O4 soft magnetic composites. J. Magn. Magn. Mater. 2016, 411, 12–17. [Google Scholar] [CrossRef]
- Ibrahim, M.; Pillay, P. Advanced testing and modeling of magnetic materials including a new method of core loss separation for electrical machines. IEEE Trans. Ind. Appl. 2012, 48, 1507–1515. [Google Scholar] [CrossRef]
- Kollár, P.; Birčáková, Z.; Füzer, J.; Bureš, R.; Fáberová, M. Power loss separation in Fe-based composite materials. J. Magn. Magn. Mater. 2013, 327, 146–150. [Google Scholar] [CrossRef]
- Ma, D.; Lu, J.; Fang, X.; Yang, K.; Wang, K.; Zhang, N.; Han, B.; Ding, M. Parameter modeling analysis of a cylindrical ferrite magnetic shield to reduce magnetic noise. IEEE Trans. Ind. Electron. 2021, 69, 991–998. [Google Scholar] [CrossRef]
- Tran, T.V.; Moussouni, F.; Brisset, S.; Brochet, P. Adapted output space-mapping technique for a bi-objective optimization. IEEE Trans. Magn. 2010, 46, 2990–2993. [Google Scholar] [CrossRef]
- Bertotti, G. Dynamic generalization of the scalar Preisach model of hysteresis. IEEE Trans. Magn. 1992, 28, 2599–2601. [Google Scholar] [CrossRef]
- Basso, V.; Bertotti, G.; Bottauscio, O.; Fiorillo, F.; Pasquale, M.; Chiampi, M.; Repetto, M. Power losses in magnetic laminations with hysteresis: Finite element modeling and experimental validation. J. Appl. Phys. 1997, 81, 5606–5608. [Google Scholar] [CrossRef]
- Bottauscio, O.; Chiampi, M.; Chiarabaglio, D. Advanced model of laminated magnetic cores for two-dimensional field analysis. IEEE Trans. Magn. 2000, 36, 561–573. [Google Scholar] [CrossRef]
- Bertotti, G.; Mayergoyz, I.D. The Science of Hysteresis: 3-Volume Set; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Li, J.; Abdallah, T.; Sullivan, C.R. Improved calculation of core loss with nonsinusoidal waveforms. In Proceedings of the Conference Record of the 2001 IEEE Industry Applications Conference, 36th IAS Annual Meeting (Cat. No. 01CH37248), Chicago, IL, USA, 30 September–4 October 2001; Volume 4, pp. 2203–2210. [Google Scholar]
- De la Barriere, O.; Ragusa, C.; Appino, C.; Fiorillo, F. Prediction of energy losses in soft magnetic materials under arbitrary induction waveforms and DC bias. IEEE Trans. Ind. Electron. 2016, 64, 2522–2529. [Google Scholar] [CrossRef]
- Zhu, S.; Cheng, M.; Dong, J.; Du, J. Core loss analysis and calculation of stator permanent-magnet machine considering DC-biased magnetic induction. IEEE Trans. Ind. Electron. 2014, 61, 5203–5212. [Google Scholar] [CrossRef]
- Kollár, P.; Olekšáková, D.; Vojtek, V.; Füzer, J.; Fáberová, M.; Bureš, R. Steinmetz law for ac magnetized iron-phenolformaldehyde resin soft magnetic composites. J. Magn. Magn. Mater. 2017, 424, 245–250. [Google Scholar] [CrossRef]
- Barbisio, E.; Bottauscio, O.; Chiampi, M.; Fiorillo, F.; Ragusa, C. Prediction of magnetic power losses in soft laminations under DC-biased supply. J. Magn. Magn. Mater. 2005, 290, 1476–1479. [Google Scholar] [CrossRef]
- Taghvaei, A.; Shokrollahi, H.; Janghorban, K.; Abiri, H. Eddy current and total power loss separation in the iron–phosphate–polyepoxy soft magnetic composites. Mater. Des. 2009, 30, 3989–3995. [Google Scholar] [CrossRef]
- IEC 60404-6:2018/AMD1:2021; IEC Magnetic Materials 60404-Part 6: Methods of Measurement of the Magnetic Properties of Magnetically Soft Metallic and Powder Materials at Frequencies in the Range 20 Hz to kHz by the The Use of Ring Specimens. IEC: Geneva, Switzerland, 2003.
- Sun, J.; Ren, J.; Li, J.; Huang, Y. Measurement and analysis of magnetic properties of permalloy for magnetic shielding devices under different temperature environments. Materials 2023, 16, 3253. [Google Scholar] [CrossRef]
- Lee, S.K.; Romalis, M. Calculation of magnetic field noise from high-permeability magnetic shields and conducting objects with simple geometry. J. Appl. Phys. 2008, 103, 084904. [Google Scholar] [CrossRef]
Method | PLD | STL |
---|---|---|
2.204 | 2.500 | |
33.03 | 362.10 | |
99.82% | - | |
12.24 | 9.780 | |
8.584 × 10−7 | 6.818 × 10−14 | |
2.94% | 3.08% |
Material | Permalloy | Co-Based Amorphous | Finemet-NANO | Ferrite |
---|---|---|---|---|
Outside diameter (mm) | 40 | 36 | 25 | 20 |
Inner diameter (mm) | 32 | 25 | 20 | 10 |
Thickness t (mm) | 3 | 11 | 5 | 7.3 |
Quality m (g) | 10.88 | 15.87 | 2.81 | 8.55 |
Averaged crystallite size (nm) | - | 8 | 9 | - |
Lamination thickness | 1 mm | 20 μm | 20 μm | - |
Method and Materials | PLD | STL | PLD | STL | PLD | STL |
---|---|---|---|---|---|---|
Co-Based Amorphous | Finemet-NANO | Ferrite | ||||
1.915 | 1.697 | 1.872 | 1.890 | 2.408 | 2.383 | |
2.204 | 1.449 | 6.758 | 5.313 | 108.3 | 56.43 | |
99.40% | - | 99.75% | - | 99.80% | - | |
4.482 × 10−11 | 4.583 × 10−7 | 0.01028 | 5.017 × 10−12 | 8.274 × 10−12 | 1.358 × 10−5 | |
0.01221 | 0.02271 | 0.08814 | 0.2580 | 0.09438 | 0.1385 | |
98.89% | 98.67% | 99.73% | 99.95% | 99.91% | 99.90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, A.; Sun, J. A Progressive Loss Decomposition Method for Low-Frequency Shielding of Soft Magnetic Materials. Materials 2024, 17, 5584. https://doi.org/10.3390/ma17225584
Ji A, Sun J. A Progressive Loss Decomposition Method for Low-Frequency Shielding of Soft Magnetic Materials. Materials. 2024; 17(22):5584. https://doi.org/10.3390/ma17225584
Chicago/Turabian StyleJi, Airu, and Jinji Sun. 2024. "A Progressive Loss Decomposition Method for Low-Frequency Shielding of Soft Magnetic Materials" Materials 17, no. 22: 5584. https://doi.org/10.3390/ma17225584
APA StyleJi, A., & Sun, J. (2024). A Progressive Loss Decomposition Method for Low-Frequency Shielding of Soft Magnetic Materials. Materials, 17(22), 5584. https://doi.org/10.3390/ma17225584