Durability Considerations in Replacing Blast Furnace Slag with Low-Grade Calcined Clay and Natural Pozzolan in Quaternary Cements
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cementitious Materials
2.1.2. Blended Cements
2.1.3. Concrete Mixes
2.2. Methods
2.2.1. Water Demand
2.2.2. Isothermal Calorimetry
2.2.3. Mechanical Strength Tests
2.2.4. Durability Assessment
2.2.5. Capillary Imbibition
2.2.6. Porosity
2.2.7. Mercury Intrusion Porosimetry (MIP)
2.2.8. Shrinkage
2.2.9. Freeze–Thaw Resistance
2.2.10. Environmental Impact Calculations
3. Results and Discussion
3.1. Isothermal Calorimetry
3.1.1. Modified R3 Test on SCMs
3.1.2. Blended Cements
3.2. Mechanical Strength
3.2.1. Mortars Compressive Strength
3.2.2. Concrete Compressive Strength
3.3. Durability
3.3.1. Porosity
3.3.2. Capillary Imbibition and Water Absorption
3.3.3. Shrinkage
3.3.4. Freeze–Thaw Resistance
3.3.5. Global Warming Potential
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Miller, S.A.; Alexander, M.G. Near-term pathways for decarbonizing global concrete production. Nat. Commun. 2023, 14, 4574. [Google Scholar] [CrossRef]
- Londono-Zuluaga, D.; Gholizadeh-Vayghan, A.; Winnefeld, F.; Avet, F.; Ben Haha, M.; Bernal, S.A.; Cizer, Ö.; Cyr, M.; Dolenec, S.; Durdzinski, P.; et al. Report of RILEM TC 267-TRM phase 3: Validation of the R3 reactivity test across a wide range of materials. Mater. Struct. 2022, 55, 142. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R.D. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Briki, Y.; Avet, F.; Zajac, M.; Bowen, P.; Haha, M.B.; Scrivener, K. Understanding of the factors slowing down metakaolin reaction in limestone calcined clay cement (LC3) at late ages. Cem. Concr. Res. 2021, 146, 106477. [Google Scholar] [CrossRef]
- Lin, R.; Han, Y.; Wang, X. Macro—Meso—Micro experimental studies of calcined clay limestone cement (LC3) paste subjected to elevated temperature. Cem. Concr. Compos. 2021, 116, 103871. [Google Scholar] [CrossRef]
- Zunino, F.; Scrivener, K. Microstructural developments of limestone calcined clay cement (LC3) pastes after long-term (3 years) hydration. Cem. Concr. Res. 2022, 153, 106693. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Lv, T.; Zhang, J.; Hou, D.; Long, W.; Dong, B. Mechanical-thermal activated dredged sludge as a supplementary cementitious material: Microstructure reconstruction and pozzolanic activity enhancement. Constr. Build. Mater. 2025, 476, 141256. [Google Scholar] [CrossRef]
- Villagrán-Zaccardi, Y.A.; Marsh, A.T.M.; Sosa, M.E.; Zega, C.J.; De Belie, N.; Bernal, S.A. Complete re-utilization of waste concretes–Valorisation pathways and research needs. Resour. Conserv. Recycl. 2022, 177, 105955. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Dyer, T.D. Pozzolanas and Pozzolanic Materials, 5th ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Dhandapani, Y.; Sakthivel, T.; Santhanam, M.; Gettu, R.; Pillai, R.G. Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3). Cem. Concr. Res. 2018, 107, 136–151. [Google Scholar] [CrossRef]
- Shui, K.; Yuan, K.; Sun, T.; Li, Q.; Zeng, W. Calcined Clays for Sustainable Concrete. In Proceedings of the 1st International Conference on Calcined Clays for Sustainable Concrete, Lausanne, Switzerland, 23–25 June 2015; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Wang, R.; Hu, Z.; Li, Y.; Wang, K.; Zhang, H. Review on the deterioration and approaches to enhance the durability of concrete in the freeze–thaw environment. Constr. Build. Mater. 2022, 321, 126371. [Google Scholar] [CrossRef]
- Ram, K.; Flegar, M.; Serdar, M.; Scrivener, K. Influence of Low- to Medium-Kaolinite Clay on the Durability of Limestone Calcined Clay Cement (LC3) Concrete. Materials 2023, 16, 374. [Google Scholar] [CrossRef] [PubMed]
- De Brabandere, L.; Grigorjev, V.; Van den Heede, P.; Nachtergaele, H.; Degezelle, K.; De Belie, N. Using Fines from Recycled High-Quality Concrete as a Substitute for Cement. Sustainability 2025, 17, 1506. [Google Scholar] [CrossRef]
- Han, X.; Wang, B.; Feng, J. Relationship between fractal feature and compressive strength of concrete based on MIP. Constr. Build. Mater. 2022, 322, 126504. [Google Scholar] [CrossRef]
- Suraneni, P.; Hajibabaee, A.; Ramanathan, S.; Wang, Y.; Weiss, J. New insights from reactivity testing of supplementary cementitious materials. Cem. Concr. Compos. 2019, 103, 331–338. [Google Scholar] [CrossRef]
- Snellings, R.; Chwast, J.; Cizer, Ö.; De Belie, N.; Dhandapani, Y.; Durdzinski, P.; Elsen, J.; Haufe, J.; Hooton, D.; Patapy, C.; et al. Report of TC 238-SCM: Hydration stoppage methods for phase assemblage studies of blended cements—results of a round robin test. Mater. Struct. 2018, 51, 111. [Google Scholar] [CrossRef]
- Laveglia, A.; Sambataro, L.; Ukrainczyk, N.; De Belie, N.; Koenders, E. Hydrated lime life-cycle assessment: Current and future scenarios in four EU countries BE IR. J. Clean. Prod. 2022, 369, 133224. [Google Scholar] [CrossRef]
- Etcheverry, J.M.; Laveglia, A.; Villagran-zaccardi, Y.A.; De Belie, N. A technical-environmental comparison of hybrid and blended slag cement-based recycled aggregate concrete tailored for optimal field performance. Dev. Built Environ. 2024, 17, 100370. [Google Scholar] [CrossRef]
- Pillai, R.G.; Gettu, R.; Santhanam, M.; Rengaraju, S.; Dhandapani, Y.; Rathnarajan, S.; Basavaraj, A.S. Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cem. Concr. Res. 2019, 118, 111–119. [Google Scholar] [CrossRef]
- Etcheverry, J.M.; Villagran-zaccardi, Y.A.; Van den Heede, P.; Hallet, V.; De Belie, N. Effect of sodium sulfate activation on the early age behaviour and microstructure development of hybrid cementitious systems containing Portland cement and blast furnace slag. Cem. Concr. Compos. 2023, 141, 105101. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Najm, H.; Venkiteela, G.; Hencken, J. Evaluating engineering properties and environmental impact of pervious concrete with fly ash and slag. J. Clean. Prod. 2019, 237, 117714. [Google Scholar] [CrossRef]
- CEMBUREAU. Key Facts Report 2024; CEMBUREAU: Brussels, Belgium, 2024. [Google Scholar]
- Zunino, F.; Scrivener, K. The influence of the filler effect on the sulfate requirement of blended cements. Cem. Concr. Res. 2019, 126, 105918. [Google Scholar] [CrossRef]
- Zunino, F.; Scrivener, K. Insights on the role of alumina content and the filler effect on the sulfate requirement of PC and blended cements. Cem. Concr. Res. 2022, 160, 106929. [Google Scholar] [CrossRef]
- Etcheverry, J.M.; Yue, Z.; Krishnan, S.; Villagran-Zaccardi, Y.A.; Heede, P.V.D.; Dhandapani, Y.; Bernal, S.A.; De Belie, N. Phase Evolution of Hybrid Alkali Sulfate-Activated Ground- Granulated Blast Furnace Slag Cements. ACS Sustain. Chem. Eng. 2023, 11, 17519–17531. [Google Scholar] [CrossRef]
- Ayati, B.; Newport, D.; Wong, H.; Cheeseman, C. Low-carbon cements: Potential for low-grade calcined clays to form supplementary cementitious materials. Clean. Mater. 2022, 5, 100099. [Google Scholar] [CrossRef]
- Sun, J.; Zunino, F.; Scrivener, K. Hydration and phase assemblage of limestone calcined clay cements (LC3) with clinker content below 50%. Cem. Concr. Res. 2024, 177, 107417. [Google Scholar] [CrossRef]
- Zaccardi, Y.A.V.; Alderete, N.M.; De Belie, N. Improved model for capillary absorption in cementitious materials: Progress over the fourth root of time. Cem. Concr. Res. 2017, 100, 153–165. [Google Scholar] [CrossRef]
- Hall, C. Capillary imbibition in cement-based materials with time-dependent permeability. Cem. Concr. Res. 2019, 124, 105835. [Google Scholar] [CrossRef]
- Kolias, S.; Georgiou, C. The effect of paste volume and of water content on the strength and water absorption of concrete. Cem. Concr. Compos. 2005, 27, 211–216. [Google Scholar] [CrossRef]
- Castro, J.; Bentz, D.; Weiss, J. Effect of sample conditioning on the water absorption of concrete. Cem. Concr. Compos. 2011, 33, 805–813. [Google Scholar] [CrossRef]
- Sayahi, F.; Emborg, M.; Hedlund, H.; Cwirzen, A. Plastic Shrinkage Cracking of Self-compacting Concrete: Influence of Capillary Pressure and Dormant Period. Nord. Concr. Res. 2019, 60, 67–88. [Google Scholar] [CrossRef]
- Acker, P.; Ulm, F.J. Creep and shrinkage of concrete: Physical origins and practical measurements. Nucl. Eng. Des. 2001, 203, 143–158. [Google Scholar] [CrossRef]
- Valenza, J.J.; Scherer, G.W. Mechanism for salt scaling. J. Am. Ceram. Soc. 2006, 89, 1161–1179. [Google Scholar] [CrossRef]
- Sun, Z.; Scherer, G.W. Effect of air voids on salt scaling and internal freezing. Cem. Concr. Res. 2010, 40, 260–270. [Google Scholar] [CrossRef]
- Chatterji, S. Freezing of air-entrained cement-based materials and specific actions of air-entraining agents. Cem. Concr. Compos. 2003, 25, 759–765. [Google Scholar] [CrossRef]
- Helmuth, R.A.; Powers, T.C. Theory of Volume Changes in Hardened Port-land-Cement Paste During Freezing; Portland Cement Association: Skokie, IL, USA, 1959. [Google Scholar]
- Scherer, G.W. Crystallization in pores. Cem. Concr. Res. 1999, 29, 1347–1358. [Google Scholar] [CrossRef]
- Tremblay, M.-H.; Lory, F.; Marchand, J.; Scherer, G.W.; Valenza, J.J. Ability of the Glue Spall Model to Account for the De-Icer Salt Scaling Deterioration of Concrete. In Pap. W4-07.3 in Proceedings of the 12th International Congress on the Chemistry of Cement (ICCC), Montreal, QC, Canada, 8–13 July 2007; Beaudoin, J.J., Makar, J.M., Raki, L., Eds.; National Research Council Canada: Ottawa, ON, Canada, 2007; ISBN 978-0-660-19695-4. [Google Scholar]
- Martínez-Martínez, J.; Benavente, D.; Gomez-Heras, M.; Marco-Castaño, L.; García-Del-Cura, M.Á. Non-linear decay of building stones during freeze-thaw weathering processes. Constr. Build. Mater. 2013, 38, 443–454. [Google Scholar] [CrossRef]
- Snellings, R.; Mertens, G.; Elsen, J. Supplementary cementitious materials. Rev. Mineral. Geochem. 2012, 74, 211–278. [Google Scholar] [CrossRef]















| PC | CC | LV | F | LL | GGBFS | |
|---|---|---|---|---|---|---|
| Dv,10 (µm) | 9.50 | 7.01 | 6.39 | 4.95 | 6.42 | 5.86 |
| Dv,50 (µm) | 21.47 | 27.93 | 16.40 | 14.38 | 13.16 | 13.32 |
| Dv,90 (µm) | 37.81 | 49.32 | 38.24 | 33.78 | 34.29 | 24.21 |
| Density (g/cm3) | 3.15 | 2.30 | 2.75 | 2.71 | 2.69 | 2.89 |
| Chemical composition (%) | ||||||
| CaO | 73.20 | 10.78 | 17.39 | 46.22 | - | 40.25 |
| Fe2O3 | 3.96 | 12.16 | 26.93 | 3.25 | 0.09 | 0.43 |
| SiO2 | 12.69 | 36.23 | 28.99 | 36.30 | 0.39 | 30.48 |
| Al2O3 | 3.79 | 9.44 | 7.01 | 5.91 | 0.13 | 12.18 |
| MgO | 1.45 | 2.28 | 3.71 | 2.17 | 0.50 | 8.13 |
| SO3 | 2.17 | 0.16 | 0.16 | 2.01 | - | 0.08 |
| K2O | 0.24 | 1.52 | 2.80 | 0.50 | - | 0.45 |
| Na2O | 0.87 | 0.56 | 1.18 | 1.35 | - | 0.58 |
| TiO2 | 1.56 | 1.15 | 2.73 | 2.21 | - | - |
| MnO | 0.06 | 0.02 | 0.20 | 0.06 | - | 0.25 |
| CaCO3 | - | - | - | - | 98 | - |
| LOI (%) | 41.3 | |||||
| Mixture ID | PC | CC | LL | F | LV | GGBFS | Gypsum | Superplasticizer (mL/ 100 g PC) |
|---|---|---|---|---|---|---|---|---|
| LC3-65 | 65 | 23.5 | 11.5 | - | - | - | 3.50 | 0.20 |
| 20CC-5LL-10F | 65 | 20 | 5 | 10 | - | - | 3.50 | 0.20 |
| 20CC-9LL-6F-10LV | 55 | 20 | 9 | 6 | 10 | - | 3.50 | 0.20 |
| 25CC-10LL-15LV | 50 | 25 | 10 | - | 15 | - | 3.50 | 0.20 |
| 45GGBFS-10LL | 45 | - | 10 | - | - | 45 | 2.75 | |
| CEM III/A (Ref. mix) | 50 | - | - | - | - | 50 | 2.75 |
| Material (kg/m3) | CEM II/C-M | CEM III/A |
|---|---|---|
| Limestone 0/4 | 346 | 349 |
| Recycled aggregate 4/20 | 889 | 897 |
| Sea sand 0/2 | 508 | 513 |
| CEM I 52.5 N | 173 | 173 |
| Calcined clay | 87 | - |
| Limestone powder | 35 | - |
| Lava | 51 | - |
| GGBFS | - | 173 |
| SIKA ViscoCrete 1090 | 2.5 | 1.5 |
| Waterfree | 173 | 173 |
| Wateradd | 44 | 44 |
| w/b ratio | 0.5 | 0.5 |
| Flow (EN 12350-5) (mm) | 440 | 440 |
| Air content (EN 12350-7) | 1.7% | 1.7% |
| Mix | PC | LL | Quartz | CC | LV | |
|---|---|---|---|---|---|---|
| ID | ||||||
| PC + LL + Q | 65 | 10 | 25 | - | - | |
| PC + LL + CC | 65 | 10 | - | 25 | - | |
| PC + LL + LV | 65 | 10 | - | - | 25 | |
| Material | Granular Skeleton + Mixing | PC | Clay | Lava | Limestone | GGBFS |
|---|---|---|---|---|---|---|
| kg CO2 equivalent/kg | 0.0206 | 0.7166 | 0.1494 | 0.0500 | 0.0026 | 0.2443 |
| Material | Cumulative Heat Release (J/g SCM) | CH Consumption (g/100 g Solids) | ||
|---|---|---|---|---|
| 3 Days | 7 Days | 10 Days | ||
| Lava | 61.6 | 97.5 | 137.0 | 4.36 |
| Calcined clay | 220.3 | 273.4 | 297.8 | 13.34 |
| Quartz | 19.5 | 31.0 | 44.8 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etcheverry, J.M.; Detemmerman, L.; Degezelle, K.; Grigorjev, V.; De Brabandere, L.; De Belie, N. Durability Considerations in Replacing Blast Furnace Slag with Low-Grade Calcined Clay and Natural Pozzolan in Quaternary Cements. Materials 2025, 18, 5048. https://doi.org/10.3390/ma18215048
Etcheverry JM, Detemmerman L, Degezelle K, Grigorjev V, De Brabandere L, De Belie N. Durability Considerations in Replacing Blast Furnace Slag with Low-Grade Calcined Clay and Natural Pozzolan in Quaternary Cements. Materials. 2025; 18(21):5048. https://doi.org/10.3390/ma18215048
Chicago/Turabian StyleEtcheverry, Juan Manuel, Laurent Detemmerman, Krist Degezelle, Vadim Grigorjev, Laurena De Brabandere, and Nele De Belie. 2025. "Durability Considerations in Replacing Blast Furnace Slag with Low-Grade Calcined Clay and Natural Pozzolan in Quaternary Cements" Materials 18, no. 21: 5048. https://doi.org/10.3390/ma18215048
APA StyleEtcheverry, J. M., Detemmerman, L., Degezelle, K., Grigorjev, V., De Brabandere, L., & De Belie, N. (2025). Durability Considerations in Replacing Blast Furnace Slag with Low-Grade Calcined Clay and Natural Pozzolan in Quaternary Cements. Materials, 18(21), 5048. https://doi.org/10.3390/ma18215048

