materials-logo

Journal Browser

Journal Browser

Advanced Photovoltaic Materials: Synthesis, Properties and Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Energy Materials".

Deadline for manuscript submissions: closed (20 December 2024) | Viewed by 6864

Special Issue Editor

Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5G 3E4, Canada
Interests: perovskite materials for photovoltaic applications; perovskite materials for light-emitting diode applications

Special Issue Information

Dear Colleagues,

Zero-carbon emissions is the global perspective on the development of a sustainable future. Solar energy, as a clean and sustainable energy, has witnessed an incredible increase in academic and industrial activity over the past several decades. Solar panels provide a direct way to convert solar energy into electricity. Silicon-based solar panels are the prevalent photovoltaic (PV) technology, yet there has been a sizable challenge to decrease the cost for decades in order to compete with the conventional fossil-fuel-based power sources without government subsidies. To seek much more affordable PV technologies, advanced materials for cost-effective PV technologies including organic solar cells, organic–inorganic hybrid solar cells, quantum-dot solar cells, compound semiconductor solar cells, dye-sensitized solar cells, perovskite solar cells, tandem/multijunction solar cells, etc. have been explored in both academia and industry. Among them, most PV technologies are still in lab-scale research and are far from practical use. Efforts in cutting-edge research outcomes into action plans for cost-effective PVs are particularly critical in the research community.

This Special issue aims to cover the most recent progress on advanced PV materials, with a particular focus on synthesis, properties, and applications. All kinds of advanced PV materials are welcome. We especially encourage the submission of manuscripts addressing hot materials such as perovskite, organic, quantum dots, organic–inorganic hybrid materials, nanostructured silicon, etc.

Dr. Deying Luo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • perovskite
  • photovoltaics
  • solar cells
  • efficiency
  • interface

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 2348 KiB  
Article
Fine Tuning the Glass Transition Temperature and Crystallinity by Varying the Thiophene-Quinoxaline Copolymer Composition
by Xun Pan and Mats R. Andersson
Materials 2024, 17(24), 6031; https://doi.org/10.3390/ma17246031 - 10 Dec 2024
Viewed by 799
Abstract
In recent years, the design and synthesis of high-performing conjugated materials for the application in organic photovoltaics (OPVs) have achieved lab-scale devices with high power conversion efficiency. However, most of the high-performing materials are still synthesised using complex multistep procedures, resulting in high [...] Read more.
In recent years, the design and synthesis of high-performing conjugated materials for the application in organic photovoltaics (OPVs) have achieved lab-scale devices with high power conversion efficiency. However, most of the high-performing materials are still synthesised using complex multistep procedures, resulting in high cost. For the upscaling of OPVs, it is also important to focus on conjugated polymers that can be made via fewer simple synthetic steps. Therefore, an easily synthesised amorphous thiophene−quinoxaline donor polymer, TQ1, has attracted our attention. An analogue, TQ-EH that has the same polymer backbone as TQ1 but with short branched side-chains, was previously reported as a donor polymer with increased crystallinity. We have synthesised copolymers with varied ratios between octyloxy and branched (2-ethylhexyl)oxy-substituted quinoxaline units having the same polymer backbone, with the aim to control the aggregation/crystallisation behaviour of the resulting copolymers. The optical properties, glass transition temperatures and degree of crystallinity of the new copolymers were systematically examined in relation to their copolymer composition, revealing that the composition can be used to fine-tune these properties of conjugated polymers. In addition, multiple sub-Tg transitions were found from some of the polymers, which are not commonly or clearly seen in other conjugated polymers. The new copolymers were tested in photovoltaic devices with a fullerene derivative as the acceptor, achieving slightly higher performances compared to the homopolymers. This work demonstrates that side-chain modification by copolymerisation can fine-tune the properties of conjugated polymers without requiring complex organic synthesis, thereby expanding the number of easily synthesised polymers for future upscaling of OPVs. Full article
Show Figures

Figure 1

20 pages, 5348 KiB  
Article
Study on Phase Change Materials’ Heat Transfer Characteristics of Medium Temperature Solar Energy Collection System
by Tianqi Wang, Yingai Jin and Firoz Alam
Materials 2024, 17(21), 5159; https://doi.org/10.3390/ma17215159 - 23 Oct 2024
Cited by 3 | Viewed by 1648
Abstract
Within the next five years, renewable energy is expected to account for approximately 80% of the new global power generation capacity, with solar power contributing to more than half of this growth. However, the intermittent nature of solar energy remains a significant challenge [...] Read more.
Within the next five years, renewable energy is expected to account for approximately 80% of the new global power generation capacity, with solar power contributing to more than half of this growth. However, the intermittent nature of solar energy remains a significant challenge to fully realizing its potential. Thus, efficient energy storage is crucial for optimizing the effectiveness and dependability of renewable energy. Phase-change materials (PCMs) can play an important role in solar energy storage due to their low cost and high volumetric energy storage density. The low thermal conductivity of PCMs restricts their use for energy storage, despite their immense potential. Hence, the primary goal of this study is to experimentally investigate the energy storage capacity of two blended phase-change materials (paraffin and barium hydroxide octahydrate) through integration with a medium-temperature solar heat collection system. The experimental findings reveal that the blended PCMs possess the highest cumulative charge fraction (0.59), energy capacity, and low energy loss compared to each PCM alone. Furthermore, the phase change storage tank achieves higher heat storage (27%) and exergy storage efficiency (18%) compared to the stored tank water without any PCMs. The blended PCMs enhanced their performance, exhibiting improved interaction and excellent thermal storage properties across a range of temperatures, offering an opportunity for the design of an energy-efficient, low-cost storage system. Full article
Show Figures

Figure 1

16 pages, 3999 KiB  
Article
Exploring the Potential of Pure Germanium Kesterite for a 2T Kesterite/Silicon Tandem Solar Cell: A Simulation Study
by Matas Rudzikas, Saulius Pakalka, Jolanta Donėlienė and Arūnas Šetkus
Materials 2023, 16(18), 6107; https://doi.org/10.3390/ma16186107 - 7 Sep 2023
Cited by 2 | Viewed by 1337
Abstract
Recently, the development of tandem devices has become one of the main strategies for further improving the efficiency of photovoltaic modules. In this regard, combining well-established Si technology with thin film technology is one of the most promising approaches. However, this imposes several [...] Read more.
Recently, the development of tandem devices has become one of the main strategies for further improving the efficiency of photovoltaic modules. In this regard, combining well-established Si technology with thin film technology is one of the most promising approaches. However, this imposes several limitations on such thin film technology, such as low prices, the absence of scarce or toxic elements, the possibility to tune optical properties and long lifetime stability. Therefore, to show the potential of kesterite/silicon tandems, in this work, a 2 terminal (2T) structure using pure germanium kesterite was simulated with combined SCAPS and transfer matrix methods. To explore the impact of individual modifications, a stepwise approach was adopted to improve the kesterite. For the bottom sub cell, a state-of-the-art silicon PERC cell was used with an efficiency of 24%. As a final result, 19.56% efficiency was obtained for the standalone top kesterite solar cell and 28.6% for the tandem device, exceeding standalone silicon efficiency by 4.6% and justifying a new method for improvement. The improvement observed could be attributed primarily to the enhanced effective lifetime, optimized base doping, and mitigated recombination at both the back and top layers of the CZGSSe absorber. Finally, colorimetric analysis showed that color purity for such tandem structure was low, and hues were limited to the predominant colors, which were reddish, yellowish, and purple in an anti-reflective coating (ARC) thickness range of 20–300 nm. The sensitivity of color variation for the whole ARC thickness range to electrical parameters was minimal: efficiency was obtained ranging from 28.05% to 28.63%. Full article
Show Figures

Figure 1

Review

Jump to: Research

42 pages, 6199 KiB  
Review
Printing and Coating Techniques for Scalable Organic Photovoltaic Fabrication
by Bradley P. Kirk, Jonas M. Bjuggren, Gunther G. Andersson, Paul Dastoor and Mats R. Andersson
Materials 2024, 17(11), 2511; https://doi.org/10.3390/ma17112511 - 23 May 2024
Cited by 4 | Viewed by 2248
Abstract
Within recent years, there has been an increased interest towards organic photovoltaics (OPVs), especially with their significant device performance reaching beyond 19% since 2022. With these advances in the device performance of laboratory-scaled OPVs, there has also been more attention directed towards using [...] Read more.
Within recent years, there has been an increased interest towards organic photovoltaics (OPVs), especially with their significant device performance reaching beyond 19% since 2022. With these advances in the device performance of laboratory-scaled OPVs, there has also been more attention directed towards using printing and coating methods that are compatible with large-scale fabrication. Though large-area (>100 cm2) OPVs have reached an efficiency of 15%, this is still behind that of laboratory-scale OPVs. There also needs to be more focus on determining strategies for improving the lifetime of OPVs that are suitable for scalable manufacturing, as well as methods for reducing material and manufacturing costs. In this paper, we compare several printing and coating methods that are employed to fabricate OPVs, with the main focus towards the deposition of the active layer. This includes a comparison of performances at laboratory (<1 cm2), small (1–10 cm2), medium (10–100 cm2), and large (>100 cm2) active area fabrications, encompassing devices that use scalable printing and coating methods for only the active layer, as well as “fully printed/coated” devices. The article also compares the research focus of each of the printing and coating techniques and predicts the general direction that scalable and large-scale OPVs will head towards. Full article
Show Figures

Figure 1

Back to TopTop