In Vitro and In Vivo Approaches in the Driving Seat of Marine Drugs Discovery

A special issue of Marine Drugs (ISSN 1660-3397).

Deadline for manuscript submissions: closed (10 June 2019) | Viewed by 59527

Special Issue Editors


E-Mail Website
Guest Editor
Graduate Institute of Marine Biology, National Dong Hwa University, Hualien 944, Taiwan
Interests: Structural elucidation; marine secondary metabolites; marine natural products; biological activities; cytotoxic mechanism; in vitro and in vivo assays
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
Interests: natural products chemistry; drug development; functional and healthy food development
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Isaac Newton once said, “I don't know what I may seem to the world, but as to myself, I seem to have been only like a boy playing on the sea-shore and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.” Despite three centuries of great scientific discoveries, the truth about oceans and their organisms remains elusive. Natural products, medicinal and synthetic chemists along with pharmacologists, biochemists, cell biologists and microbiologists united their forces to unleash hidden treasures of oceans and seas. New classes of secondary metabolites were discovered from marine organisms with an unprecedented spectrum of biological activities. Several compounds entered the drug pipeline and many others are in various stages of clinical trials. Scientists used all available biological assays to screen marine organism extracts and fractions to zoom in on the most important compounds.

This Special Issue of Marine Drugs entitled “In Vitro and In Vivo Approaches in the Driving Seat of Marine Drugs Discovery” focuses on presenting the most recent advances in biological assays applied for the discovery of marine secondary metabolites with potential biological activities. Full research papers, short notes and review articles reporting the applications of in vitro and in vivo assays to reveal biological activities of marine natural products, will be considered. Colleagues are invited to present their research on biochemical and cell line assays along with pharmacokinetics, pharmacodynamics and disease models. They are also encouraged to present the most recent discoveries in new targets and assays for accelerating the process of drug discovery.

Prof. Mei-Chin Lu
Dr. Kuei-Hung Lai
Prof. Mohamed El-Shazly
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Marine secondary metabolites
  • Biological activities
  • In vitro assays
  • In vivo assays
  • Drug discovery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 3015 KiB  
Article
Heteronemin Induces Anti-Proliferation in Cholangiocarcinoma Cells via Inhibiting TGF-β Pathway
by Hung-Yun Lin, Shu-Leei Tey, Yih Ho, Yung-Tang Chin, Kuan Wang, Jacqueline Whang-Peng, Ya-Jung Shih, Yi-Ru Chen, Yung-Ning Yang, Yu-Cheng Chen, Yi-Chang Liu, Heng-Yuan Tang and Yu-Chen SH Yang
Mar. Drugs 2018, 16(12), 489; https://doi.org/10.3390/md16120489 - 6 Dec 2018
Cited by 15 | Viewed by 3991
Abstract
A marine sesterterpenoid-type natural product, heteronemin, retains anticancer effects. In the current study, we investigate the antitumor mechanism of heteronemin in cholangiocarcinoma cells and further explore its molecular targets. Initially, heteronemin exhibited potent cytotoxic effects against cholangiocarcinoma HuccT1 and SSP-25 cells. In vitro, [...] Read more.
A marine sesterterpenoid-type natural product, heteronemin, retains anticancer effects. In the current study, we investigate the antitumor mechanism of heteronemin in cholangiocarcinoma cells and further explore its molecular targets. Initially, heteronemin exhibited potent cytotoxic effects against cholangiocarcinoma HuccT1 and SSP-25 cells. In vitro, heteronemin altered the abilities of cell adhesion and cell migration in HuccT1 and SSP-25 cell lines. It repressed messenger ribonucleic acid (mRNA) expression levels of transforming growth factor (TGF)-β, mothers against decapentaplegic homolog (SMAD) and Myc, whose protein products play important roles in regulating cell growth, angiogenesis, and metastasis. In addition, heteronemin altered several signaling pathways. The results indicate that heteronemin was able to modulate cell adhesion, the expression of extracellular matrix (ECM) receptors, the TGF-β pathway, cell motility, the membrane integration, metastasis response, matrix metalloproteinase (MMP) remodeling, the regulation of metabolism, sprouting angiogenesis, transcription factors, and vasculogenesis in cholangiocarcinoma cell lines. The results also suggest that it activated multiple signal transduction pathways to induce an anti-proliferation effect and anti-metastasis in cholangiocarcinoma. In conclusion, heteronemin may be used as a potential medicine for anticancer therapy. Full article
Show Figures

Figure 1

15 pages, 2767 KiB  
Article
Biogenic Polyphosphate Nanoparticles from a Marine Cyanobacterium Synechococcus sp. PCC 7002: Production, Characterization, and Anti-Inflammatory Properties In Vitro
by Guangxin Feng, Shiyuan Dong, Min Huang, Mingyong Zeng, Zunying Liu, Yuanhui Zhao and Haohao Wu
Mar. Drugs 2018, 16(9), 322; https://doi.org/10.3390/md16090322 - 10 Sep 2018
Cited by 15 | Viewed by 5429
Abstract
Probiotic-derived polyphosphates have attracted interest as potential therapeutic agents to improve intestinal health. The current study discovered the intracellular accumulation of polyphosphates in a marine cyanobacterium Synechococcus sp. PCC 7002 as nano-sized granules. The maximum accumulation of polyphosphates in Synechococcus sp. PCC 7002 [...] Read more.
Probiotic-derived polyphosphates have attracted interest as potential therapeutic agents to improve intestinal health. The current study discovered the intracellular accumulation of polyphosphates in a marine cyanobacterium Synechococcus sp. PCC 7002 as nano-sized granules. The maximum accumulation of polyphosphates in Synechococcus sp. PCC 7002 was found at the late logarithmic growth phase when the medium contained 0.74 mM of KH2PO4, 11.76 mM of NaNO3, and 30.42 mM of Na2SO4. Biogenic polyphosphate nanoparticles (BPNPs) were obtained intact from the algae cells by hot water extraction, and were purified to remove the organic impurities by Sephadex G-100 gel filtration. By using 100 kDa ultrafiltration, BPNPs were fractionated into the larger and smaller populations with diameters ranging between 30–70 nm and 10–30 nm, respectively. 4′,6-diamidino-2-phenylindole fluorescence and orthophosphate production revealed that a minor portion of BPNPs (about 14–18%) were degraded during simulated gastrointestinal digestion. In vitro studies using lipopolysaccharide-activated RAW264.7 cells showed that BPNPs inhibited cyclooxygenase-2, inducible nitric oxide (NO) synthase expression, and the production of proinflammatory mediators, including NO, tumor necrosis factor-α, interleukin-6, and interleukin-1β through suppressing the Toll-like receptor 4/NF-κB signaling pathway. Overall, there is promise in the use of the marine cyanobacterium Synechococcus sp. PCC 7002 to produce BPNPs, an anti-inflammatory postbiotic. Full article
Show Figures

Graphical abstract

19 pages, 1542 KiB  
Article
Naamines and Naamidines as Novel Agents against a Plant Virus and Phytopathogenic Fungi
by Pengbin Guo, Gang Li, Yuxiu Liu, Aidang Lu, Ziwen Wang and Qingmin Wang
Mar. Drugs 2018, 16(9), 311; https://doi.org/10.3390/md16090311 - 3 Sep 2018
Cited by 14 | Viewed by 3873
Abstract
Naamines, naamidines and various derivatives of these marine natural products were synthesized and characterized by means of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. The activities of these alkaloids against a plant virus and phytopathogenic fungi were evaluated for the first time. [...] Read more.
Naamines, naamidines and various derivatives of these marine natural products were synthesized and characterized by means of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. The activities of these alkaloids against a plant virus and phytopathogenic fungi were evaluated for the first time. A benzyloxy naamine derivative 15d displayed excellent in vivo activity against tobacco mosaic virus at 500 μg/mL (inactivation activity, 46%; curative activity, 49%; and protective activity, 41%); its activities were higher than the corresponding activities of the commercial plant virucide ribavirin (32%, 35%, and 34%, respectively), making it a promising new lead compound for antiviral research. In vitro assays revealed that the test compounds exhibited very good antifungal activity against 14 kinds of phytopathogenic fungi. Again, the benzyloxy naamine derivative 15d exhibited broad-spectrum fungicidal activity, emerging as a new lead compound for fungicidal research. Additional in vivo assays indicated that many of the compounds displayed inhibitory effects >30%. Full article
Show Figures

Graphical abstract

14 pages, 2376 KiB  
Article
Functional Comparison of High and Low Molecular Weight Chitosan on Lipid Metabolism and Signals in High-Fat Diet-Fed Rats
by Shing-Hwa Liu, Chen-Yuan Chiu, Ching-Ming Shi and Meng-Tsan Chiang
Mar. Drugs 2018, 16(8), 251; https://doi.org/10.3390/md16080251 - 29 Jul 2018
Cited by 29 | Viewed by 4630
Abstract
The present study examined and compared the effects of low- and high-molecular weight (MW) chitosan, a nutraceutical, on lipid metabolism in the intestine and liver of high-fat (HF) diet-fed rats. High-MW chitosan as well as low-MW chitosan decreased liver weight, elongated the small [...] Read more.
The present study examined and compared the effects of low- and high-molecular weight (MW) chitosan, a nutraceutical, on lipid metabolism in the intestine and liver of high-fat (HF) diet-fed rats. High-MW chitosan as well as low-MW chitosan decreased liver weight, elongated the small intestine, improved the dysregulation of blood lipids and liver fat accumulation, and increased fecal lipid excretion in rats fed with HF diets. Supplementation of both high- and low-MW chitosan markedly inhibited the suppressed phosphorylated adenosine monophosphate (AMP)-activated protein kinase-α (AMPKα) and peroxisome proliferator-activated receptor-α (PPARα) protein expressions, and the increased lipogenesis/cholesterogenesis-associated protein expressions [peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element binding protein-1c and -2 (SREBP1c and SREBP2)] and the suppressed apolipoprotein E (ApoE) and microsomal triglyceride transfer protein (MTTP) protein expressions in the livers of rats fed with HF diets. Supplementation with both a low- and high-MW chitosan could also suppress the increased MTTP protein expression and the decreased angiopoietin-like protein-4 (Angptl4) expression in the intestines of rats fed with HF diets. In comparison between low- and high-MW chitosan, high-MW chitosan exhibits a higher efficiency than low-MW chitosan on the inhibition of intestinal lipid absorption and an increase of hepatic fatty acid oxidation, which can improve liver lipid biosynthesis and accumulation. Full article
Show Figures

Graphical abstract

15 pages, 3192 KiB  
Article
A Sterol from Soft Coral Induces Apoptosis and Autophagy in MCF-7 Breast Cancer Cells
by Jing-Ru Weng, Chang-Fang Chiu, Jing-Lan Hu, Chia-Hsien Feng, Chiung-Yao Huang, Li-Yuan Bai and Jyh-Horng Sheu
Mar. Drugs 2018, 16(7), 238; https://doi.org/10.3390/md16070238 - 17 Jul 2018
Cited by 13 | Viewed by 4754
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that plays a key role in regulating cellular metabolism, and is a therapeutic target for cancer therapy. To search for potential PPARγ activators, a compound library comprising 11 marine compounds was examined. Among [...] Read more.
The peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that plays a key role in regulating cellular metabolism, and is a therapeutic target for cancer therapy. To search for potential PPARγ activators, a compound library comprising 11 marine compounds was examined. Among them, a sterol, 3β,11-dihydroxy-9,11-secogorgost-5-en-9-one (compound 1), showed the highest PPARγ activity with an IC50 value of 8.3 μM for inhibiting human breast adenocarcinoma cell (MCF-7) growth. Western blotting experiments showed that compound 1 induces caspase activation and PARP cleavage. In addition, compound 1 modulated the expression of various PPARγ-regulated downstream biomarkers including cyclin D1, cyclin-dependent kinase (CDK)6, B-cell lymphoma 2 (Bcl-2), p38, and extracellular-signal-regulated kinase (ERK). Moreover, compound 1 increased reactive oxygen species (ROS) generation, upregulated the phosphorylation and expression of H2AX, and induced autophagy. Interestingly, pre-treatment with the autophagy inhibitor 3-methyladenine rescued cells from compound 1-induced growth inhibition, which indicates that the cytotoxic effect of compound 1 is, in part, attributable to its ability to induce autophagy. In conclusion, these findings suggest the translational potential of compound 1 in breast cancer therapy. Full article
Show Figures

Figure 1

22 pages, 6508 KiB  
Article
Breaking down Leukemia Walls: Heteronemin, a Sesterterpene Derivative, Induces Apoptosis in Leukemia Molt4 Cells through Oxidative Stress, Mitochondrial Dysfunction and Induction of Talin Expression
by Yu-Cheng Chen, Mei-Chin Lu, Mohamed El-Shazly, Kuei-Hung Lai, Tung-Ying Wu, Yu-Ming Hsu, Yi-Lun Lee and Yi-Chang Liu
Mar. Drugs 2018, 16(6), 212; https://doi.org/10.3390/md16060212 - 17 Jun 2018
Cited by 25 | Viewed by 6034
Abstract
Heteronemin, the most abundant secondary metabolite in the sponge Hippospongia sp., exhibited potent cytotoxic activity against several cancer cell lines. It increased the percentage of apoptotic cells and reactive oxygen species (ROS) in Molt4 cells. The use of ROS scavenger, N-acetyl cysteine [...] Read more.
Heteronemin, the most abundant secondary metabolite in the sponge Hippospongia sp., exhibited potent cytotoxic activity against several cancer cell lines. It increased the percentage of apoptotic cells and reactive oxygen species (ROS) in Molt4 cells. The use of ROS scavenger, N-acetyl cysteine (NAC), suppressed both the production of ROS from mitochondria and cell apoptosis that were induced by heteronemin treatment. Heteronemin upregulated talin and phosphorylated talin expression in Molt4 cells but it only upregulated the expression of phosphorylated talin in HEK293 cells. However, pretreatment with NAC reversed these effects. Talin siRNA reversed the activation of pro-apoptotic cleaved caspases 3 and 9. On the other hand, the downstream proteins including FAK and NF-κB (p65) were not affected. In addition, we confirmed that heteronemin directly modulated phosphorylated talin expression through ROS generation resulting in cell apoptosis, but it did not affect talin/FAK complex. Furthermore, heteronemin interfered with actin microfilament and caused morphology changes. Taken together, these findings suggest that the cytotoxic effect of heteronemin is associated with oxidative stress and induction of phosphorylated talin expression. Our results suggest that heteronemin represents an interesting candidate which can be further developed as a drug lead against leukemia. Full article
Show Figures

Graphical abstract

24 pages, 6480 KiB  
Article
Heteronemin, a Marine Sesterterpenoid-Type Metabolite, Induces Apoptosis in Prostate LNcap Cells via Oxidative and ER Stress Combined with the Inhibition of Topoisomerase II and Hsp90
by Man-Gang Lee, Yi-Chang Liu, Yi-Lun Lee, Mohamed El-Shazly, Kuei-Hung Lai, Shou-Ping Shih, Seng-Chung Ke, Ming-Chang Hong, Ying-Chi Du, Juan-Cheng Yang, Ping-Jyun Sung, Zhi-Hong Wen and Mei-Chin Lu
Mar. Drugs 2018, 16(6), 204; https://doi.org/10.3390/md16060204 - 10 Jun 2018
Cited by 48 | Viewed by 6690
Abstract
Heteronemin, a marine sesterterpenoid-type natural product, possesses diverse bioactivities, especially antitumor effect. Accumulating evidence shows that heteronemin may act as a potent anticancer agent in clinical therapy. To fully understand the antitumor mechanism of heteronemin, we further explored the precise molecular targets in [...] Read more.
Heteronemin, a marine sesterterpenoid-type natural product, possesses diverse bioactivities, especially antitumor effect. Accumulating evidence shows that heteronemin may act as a potent anticancer agent in clinical therapy. To fully understand the antitumor mechanism of heteronemin, we further explored the precise molecular targets in prostate cancer cells. Initially, heteronemin exhibited potent cytotoxic effect against LNcap and PC3 prostate cancer cells with IC50 1.4 and 2.7 μM after 24 h, respectively. In the xenograft animal model, the tumor size was significantly suppressed to about 51.9% in the heteronemin-treated group in comparison with the control group with no significant difference in the mice body weights. In addition, the results of a cell-free system assay indicated that heteronemin could act as topoisomerase II (topo II) catalytic inhibitor through the elimination of essential enzymatic activity of topoisomerase IIα expression. We found that the use of heteronemin-triggered apoptosis by 20.1–68.3%, caused disruption of mitochondrial membrane potential (MMP) by 66.9–99.1% and promoted calcium release by 1.8-, 2.0-, and 2.1-fold compared with the control group in a dose-dependent manner, as demonstrated by annexin-V/PI, rhodamine 123 and Fluo-3 staining assays, respectively. Moreover, our findings indicated that the pretreatment of LNcap cells with an inhibitor of protein tyrosine phosphatase (PTPi) diminished growth inhibition, oxidative and Endoplasmic Reticulum (ER) stress, as well as activation of Chop/Hsp70 induced by heteronemin, suggesting PTP activation plays a crucial rule in the cytotoxic activity of heteronemin. Using molecular docking analysis, heteronemin exhibited more binding affinity to the N-terminal ATP-binding pocket of Hsp90 protein than 17-AAG, a standard Hsp90 inhibitor. Finally, heteronemin promoted autophagy and apoptosis through the inhibition of Hsp 90 and topo II as well as PTP activation in prostate cancer cells. Taken together, these multiple targets present heteronemin as an interesting candidate for its future development as an antiprostatic agent. Full article
Show Figures

Graphical abstract

13 pages, 22515 KiB  
Article
7-Acetylsinumaximol B Induces Apoptosis and Autophagy in Human Gastric Carcinoma Cells through Mitochondria Dysfunction and Activation of the PERK/eIF2α/ATF4/CHOP Signaling Pathway
by Tsung-Chang Tsai, Kuei-Hung Lai, Jui-Hsin Su, Yu-Jen Wu and Jyh-Horng Sheu
Mar. Drugs 2018, 16(4), 104; https://doi.org/10.3390/md16040104 - 26 Mar 2018
Cited by 41 | Viewed by 5944
Abstract
The 7-Acetylsinumaximol B (7-AB), a bioactive cembranoid, was originally discovered from aquaculture soft coral Sinularia sandensis. The current study investigated the anti-proliferative property of 7-AB towards the NCI-N87 human gastric cancer cell line. An MTT cell proliferative assay was applied to evaluate [...] Read more.
The 7-Acetylsinumaximol B (7-AB), a bioactive cembranoid, was originally discovered from aquaculture soft coral Sinularia sandensis. The current study investigated the anti-proliferative property of 7-AB towards the NCI-N87 human gastric cancer cell line. An MTT cell proliferative assay was applied to evaluate cell survival, and immunofluorescence staining and western blotting were employed to analyze the effects of 7-AB on autophagy and apoptosis. Our results showed that 7-AB exerted a concentration-dependent anti-proliferative effect on NCI-N87 cells, and fluorescence staining indicated that the effect was due to the apoptosis induced by 7-AB. In addition, the 7-AB-induced anti-proliferation towards NCI-N87 cells was associated with the release of cytochrome c from mitochondria, activation of pro-apoptotic proteins (such as caspase-3/-9, Bax and Bad), and inhibition of anti-apoptotic proteins (Bcl-2, Bcl-xL, and Mcl-1). The 7-AB treatment also triggered endoplasmic reticulum (ER) stress, leading to activation of the PERK/elF2α/ATF4/CHOP apoptotic pathway. Furthermore, 7-AB initiated autophagy in NCI-N87 cells and induced the expression of autophagy-related proteins, including Atg3, Atg5, Atg7, Atg12, LC3-I, and LC3-II. Taken together, our findings suggested that 7-AB has the potential to be further developed as a useful anti-cancer or adjuvant agent for the treatment of human gastric cancer. Full article
Show Figures

Graphical abstract

18 pages, 7788 KiB  
Article
Isoaaptamine Induces T-47D Cells Apoptosis and Autophagy via Oxidative Stress
by Chih-Fung Wu, Man-Gang Lee, Mohamed El-Shazly, Kuei-Hung Lai, Seng-Chung Ke, Chiang-Wen Su, Shou-Ping Shih, Ping-Jyun Sung, Ming-Chang Hong, Zhi-Hong Wen and Mei-Chin Lu
Mar. Drugs 2018, 16(1), 18; https://doi.org/10.3390/md16010018 - 9 Jan 2018
Cited by 44 | Viewed by 6167
Abstract
Aaptos is a genus of marine sponge which belongs to Suberitidae and is distributed in tropical and subtropical oceans. Bioactivity-guided fractionation of Aaptos sp. methanolic extract resulted in the isolation of aaptamine, demethyloxyaaptamine, and isoaaptamine. The cytotoxic activity of the isolated compounds was [...] Read more.
Aaptos is a genus of marine sponge which belongs to Suberitidae and is distributed in tropical and subtropical oceans. Bioactivity-guided fractionation of Aaptos sp. methanolic extract resulted in the isolation of aaptamine, demethyloxyaaptamine, and isoaaptamine. The cytotoxic activity of the isolated compounds was evaluated revealing that isoaaptamine exhibited potent cytotoxic activity against breast cancer T-47D cells. In a concentration-dependent manner, isoaaptamine inhibited the growth of T-47D cells as indicated by short-(MTT) and long-term (colony formation) anti-proliferative assays. The cytotoxic effect of isoaaptamine was mediated through apoptosis as indicated by DNA ladder formation, caspase-7 activation, XIAP inhibition and PARP cleavage. Transmission electron microscopy and flow cytometric analysis using acridine orange dye indicated that isoaaptamine treatment could induce T-47D cells autophagy. Immunoblot assays demonstrated that isoaaptamine treatment significantly activated autophagy marker proteins such as type II LC-3. In addition, isoaaptamine treatment enhanced the activation of DNA damage (γH2AX) and ER stress-related proteins (IRE1 α and BiP). Moreover, the use of isoaaptamine resulted in a significant increase in the generation of reactive oxygen species (ROS) as well as in the disruption of mitochondrial membrane potential (MMP). The pretreatment of T-47D cells with an ROS scavenger, N-acetyl-l-cysteine (NAC), attenuated the apoptosis and MMP disruption induced by isoaaptamine up to 90%, and these effects were mediated by the disruption of nuclear factor erythroid 2-related factor 2 (Nrf 2)/p62 pathway. Taken together, these findings suggested that the cytotoxic effect of isoaaptamine is associated with the induction of apoptosis and autophagy through oxidative stress. Our data indicated that isoaaptamine represents an interesting drug lead in the war against breast cancer. Full article
Show Figures

Figure 1

3990 KiB  
Article
Lobocrassin B Induces Apoptosis of Human Lung Cancer and Inhibits Tumor Xenograft Growth
by Meng-Xian Lin, Shen-Hao Lin, Yi-Rong Li, Ya-Hsuan Chao, Ching-Hsiung Lin, Jui-Hsin Su and Chi-Chien Lin
Mar. Drugs 2017, 15(12), 378; https://doi.org/10.3390/md15120378 - 4 Dec 2017
Cited by 12 | Viewed by 4699
Abstract
Lobocrassin B, a natural cembrane-type compound isolated from the soft coral Lobophytum crassum, has been shown to have significant biological effects, including anticancer activity. As the most common cause of cancer mortality worldwide, lung cancer remains a major concern threatening human health. [...] Read more.
Lobocrassin B, a natural cembrane-type compound isolated from the soft coral Lobophytum crassum, has been shown to have significant biological effects, including anticancer activity. As the most common cause of cancer mortality worldwide, lung cancer remains a major concern threatening human health. In the current study, we conducted in vitro experiments to demonstrate the inhibiting effect of Lobocrassin B on CL1-5 and H520 human lung cancer cells growth and to explore the underlying mechanisms, as well as in nude mice bearing CL1-5 tumor xenografts. Lobocrassin B exerted cytotoxic effects on lung cancer cells, as shown by decreasing cell viability, and inducing apoptosis, oxidative stress and mitochondrial dysfunction. In addition, the increased level of Bax, cleaved caspase-3, -9 and -8, and the suppression of Bcl-2 were observed in the Lobocrassin B treated cells. Moreover, in vivo assays verified the significance of these results, revealing that Lobocrassin B inhibited CL1-5 tumor xenograft growth and that inhibitory effects were accompanied by a marked increase in tumor cell apoptosis. In conclusion, the results suggested that Lobocrassin B could be a potential anticancer compound for its propensity to inhibit growth and induce apoptosis in human lung cancer cells. Full article
Show Figures

Figure 1

2014 KiB  
Article
Anti-Inflammatory Cembranoids from the Soft Coral Lobophytum crassum
by Kuei-Hung Lai, Wan-Jing You, Chi-Chen Lin, Mohamed El-Shazly, Zuo-Jian Liao and Jui-Hsin Su
Mar. Drugs 2017, 15(10), 327; https://doi.org/10.3390/md15100327 - 23 Oct 2017
Cited by 44 | Viewed by 6204
Abstract
Abstract: Cembrane-type diterpenoids are among the most frequently encountered natural products from the soft corals of the genus Lobophytum. In the course of our investigation to identify anti-inflammatory constituents from a wild-type soft coral Lobophytum crassum, two new cembranoids, lobophyolide [...] Read more.
Abstract: Cembrane-type diterpenoids are among the most frequently encountered natural products from the soft corals of the genus Lobophytum. In the course of our investigation to identify anti-inflammatory constituents from a wild-type soft coral Lobophytum crassum, two new cembranoids, lobophyolide A (1) and B (2), along with five known compounds (37), were isolated. The structures of these natural products were identified using NMR and MS spectroscopic analyses. Compound 1 was found to possess the first identified α-epoxylactone group among all cembrane-type diterpenoids. The in vitro anti-inflammatory effect of compounds 1–5 was evaluated. The results showed that compounds 1–5 not only reduced IL-12 release, but also attenuated NO production in LPS-activated dendritic cells. Our data indicated that the isolated series of cembrane-type diterpenoids demonstrated interesting structural features and anti-inflammatory activity which could be further developed into therapeutic entities. Full article
Show Figures

Graphical abstract

Back to TopTop