You are currently viewing a new version of our website. To view the old version click .

Journal of Sensor and Actuator Networks

Journal of Sensor and Actuator Networks is an international, peer-reviewed, open access journal on the science and technology of sensor and actuator networks, published bimonthly online by MDPI.

Quartile Ranking JCR - Q2 (Computer Science, Information Systems | Telecommunications)

All Articles (754)

Seconds count differently for people in danger. We present a real-time streaming pipeline for audio-based detection of hazardous life events affecting life and property. The system operates online rather than as a retrospective analysis tool. Its objective is to reduce the latency between the occurrence of a crime, conflict, or accident and the corresponding response by authorities. The key idea is to map reality as perceived by audio into a written story and question the text via a large language model. The method integrates streaming, zero-shot algorithms in an online decoding mode that convert sound into short, interpretable tokens, which are processed by a lightweight language model. CLAP text–audio prompting identifies agitation, panic, and distress cues, combined with conversational dynamics derived from speaker diarization. Lexical information is obtained through streaming automatic speech recognition, while general audio events are detected by a streaming version of Audio Spectrogram Transformer tagger. Prosodic features are incorporated using pitch- and energy-based rules derived from robust F0 tracking and periodicity measures. The system uses a large language model configured for online decoding and outputs binary (YES/NO) life-threatening risk decisions every two seconds, along with a brief justification and a final session-level verdict. The system emphasizes interpretability and accountability. We evaluate it on a subset of the X-Violence dataset, comprising only real-world videos. We release code, prompts, decision policies, evaluation splits, and example logs to enable the community to replicate, critique, and extend our blueprint.

1 January 2026

Recognizing life-threatening situations on the fly. Streaming audio modules generate labels every two seconds: a streaming AST identifies general audio events, a streaming ASR detects language and transcribes speech in real time, and a zero-shot CLAP model estimates emotional cues. Prosody and gender models characterize how speech is delivered and add a gender flag. A rolling history of timestamped labels is then passed to an LLM, which produces streaming hazard judgments and explains the rationale behind each decision.

The rapid expansion of Long Range (LoRa) and Long Range Wide Area Network (LoRaWAN) protocol technologies in large-scale Internet of Things (IoT) deployments highlights the need for precise and analytically grounded energy consumption (EC) estimation of battery-powered LoRa end devices (DVs). Since LoRa DV instantaneous EC strongly depends on key transmission parameters, primarily including spreading factor (SF), transmit (Tx) power, and LoRa message packet size (PS), accurate modelling of their combined influence is essential for optimizing LoRa end DV lifetime, ensuring energy-efficient network operation, and supporting transmission parameter-adaptive communication strategies. Motivated by these needs, this paper presents a comprehensive multiple linear regression modelling framework for quantifying LoRa end DV EC during one transmission and reception LoRa end DV Class A communication cycle. The study is based on extensive high-resolution electric-current measurements collected over 69 measurement sets spanning different combinations of SFs, Tx power levels, and PS values. Based on measurement results, a total of 14 multiple linear regression models are developed, each capturing the joint impact of two transmission parameters while holding the third fixed. The developed regression models are mathematically formulated using linear, interaction, and polynomial terms to accurately express nonlinear EC behavior. Detailed statistical accuracy assessments demonstrate excellent goodness of fit of the developed EC multiple linear regression models. Complementary numerical analyses of regression models EC data distribution further validate regression models’ reliability, and highlight transmission parameter-driven variability of Lora end DV EC. The results of numerical analyses for LoRa end DV EC data distribution show that specific combinations of SF, Tx power, and PS transmit parameters amplify or mitigate EC differences, demonstrating that their joint variability patterns can significantly alter instantaneous energy demand across operating conditions. These interactions underscore the importance of modelling parameters together, rather than in isolation. The developed regression models provide interpretable mathematical formulations of instantaneous LoRa end DV EC prediction for transmission at different combinations of transmission parameters, and offer practical value for energy-aware configuration, battery-lifetime planning, and optimization of LoRa network-based IoT systems.

29 December 2025

Visualisation of a typical LoRa network architecture.

The camera is a core device for modern surveillance and data collection, widely used in various fields including security, transportation, and healthcare. However, their widespread deployment has proportionally escalated associated security risks. This paper initially examines the current state of research on attack methods targeting camera systems, providing a comprehensive review of various attack techniques and their security implications. Subsequently, we focus on a specific attack method against universal serial bus (USB) cameras, known as electromagnetic pulse (EMP) attacks, which utilize EMP to prevent the system from detecting the cameras. We simulated EMP attacks using a solar insecticidal lamp (which generates EMP by releasing high-voltage pulses) and a commercially available EMP generator. The performance of the cameras under various conditions was evaluated by adjusting the number of filtering magnetic rings on the USB cable and the distance between the camera and the interference source. The results demonstrate that some USB cameras are vulnerable to EMP attacks. Although EMP attacks might not invariably cause image distortion or permanent damage, their covert nature can lead to false detection of system failures, data security, and system maintenance. Based on these findings, it is recommended to determine the optimal number of shielding rings for cameras or their safe distance from EMP sources through the experimental approach outlined in this study, thereby enhancing the security and resilience of USB camera enabled systems in specific scenarios.

29 December 2025

Features and application scenes of cameras with various interfaces.

Fiber-Optic Gyroscopes: Architectures, Signal Processing, Error Compensation, and Emerging Trends

  • Yerlan Tashtay,
  • Nurzhigit Smailov and
  • Daulet Naubetov
  • + 5 authors

Fiber-optic gyroscopes (FOGs) have become one of the most important elements of modern inertial navigation systems due to their high accuracy, reliability, and independence from external signals such as satellite navigation. This review analyzes and discusses the key FOG architectures: interferometric (IFOG), resonant (RFOG), digital (DFOG), and hybrid (HFOG). The concepts of their functioning, structural features, and the main advantages and limitations of each architecture are examined. Particular focus is placed on advanced signal-processing and error-compensation algorithms, including filtering techniques, noise suppression, mitigation of thermal and mechanical drifts, and emerging machine learning (ML) based approaches. The analysis of these architectures is carried out in terms of major parameters that determine accuracy, robustness, and miniaturization potential. Various applications of FOGs in space systems, ground platforms, marine and underwater navigation, aviation, and scientific research are also being considered. Finally, the latest development trends are summarized, with a particular focus on miniaturization, integration with additional sensors, and the introduction of digital and AI-driven solutions, aimed at achieving higher accuracy, long-term stability, and resilience to real-world disturbances.

25 December 2025

Schematic configuration of an IFOG illustrating a typical system-level architecture, including the light source, multifunction integrated optical chip (MIOC) with an integrated coupler, phase modulator, and polarizer, the fiber coil, photodetector, and closed-loop signal-processing electronics.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Machine Learning in Communication Systems and Networks
Reprint

Machine Learning in Communication Systems and Networks

Editors: Yichuang Sun, Haeyoung Lee, Oluyomi Simpson
Agents and Robots for Reliable Engineered Autonomy
Reprint

Agents and Robots for Reliable Engineered Autonomy

Editors: Rafael C. Cardoso, Angelo Ferrando, Daniela Briola, Claudio Menghi, Tobias Ahlbrecht

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
J. Sens. Actuator Netw. - ISSN 2224-2708